Patients infected with the COVID-19 virus develop severe pneumonia, which typically results in death. Radiological data show that the disease involves interstitial lung involvement, lung opacities, bilateral ground-glass opacities, and patchy opacities. This study aimed to improve COVID-19 diagnosis via radiological chest X-ray (CXR) image analysis, making a substantial contribution to the development of a mobile application that efficiently identifies COVID-19, saving medical professionals time and resources. It also allows for timely preventative interventions by using more than 18000 CXR lung images and the MobileNetV2 convolutional neural network (CNN) architecture. The MobileNetV2 deep-learning model performances were evaluated using precision, sensitivity, specificity, accuracy, and F-measure to classify CXR images into COVID-19, non-COVID-19 lung opacity, and normal control. Results showed a precision of 92.91%, sensitivity of 90.6, specificity of 96.45%, accuracy of 90.6%, and F-measure of 91.74% in COVID-19 detection. Indeed, the suggested MobileNetV2 deep-learning CNN model can improve classification performance by minimising the time required to collect per-image results for a mobile application.
COVID-19 is a unique viral infectious illness that causes a variety of symptoms and health hazards, particularly to the respiratory system and has been declared a worldwide pandemic. The disease is characterized by a cytokine release in severe conditions. Interleukin-6 (IL-6), a proinflammatory cytokine, mediates an important immunomodulatory process. Also, vitamin D was identified to have a role in the innate immunity of individuals. Our study was designed to find the role of IL-6 and vitamin D in COVID-19 patients, as well as, to see whether there is a link between vitamin D deficiency and cytokine syndrome development. The study included 90 COVID-19 patients and 30 control people from Baghdad, Iraq. The age of the participants was non-s
... Show MoreThe objective of this study was to assess the impact of the COVID-19 pandemic on healthcare providers (HCPs) at personal and professional levels.
This was a cross-sectional descriptive study. It was conducted using an electronic format survey through Qualtrics Survey Software in English. The target participants were HCPs working in any healthcare setting across Iraq. The survey was distributed via two professional Facebook groups between 7 April and 7 May 2020. The survey items were adopted with modifications from three previous studies of Severe Acute Respiratory Syndrome (SARS) and Avia
Thrombosis is a common clinical feature associated with morbidity and mortality in coronavirus disease-2019 (COVID-19) patients. Cytokine storm in COVID-19 increases patients' systemic inflammation, which can cause multiple health consequences. In this work, we aimed to indicate the effect of Pfizer-BioNTech vaccination on the modulation of monocyte chemoattractant protein-3 (MCP-3), matrix metalloproteinase 1 (MMP-1), and tumor necrosis factor-alpha (TNF-α) levels, and other systemic inflammatory biomarkers that associates with COVID-19 severity in patients who suffers from thrombosis consequences. For this purpose, ninety people were collected from Ibn Al-Nafees Hospital and divided into three groups each of which contained 30 people, 15
... Show MoreCoronavirus: (COVID-19) is a recently discovered viral disease caused by a new strain of coronavirus.
The majority of patients with corona-virus infections will have a mild-moderate respiratory disease that recovers without special care. Most often, the elderly, and others with chronic medical conditions such as asthma, coronary disease, respiratory illness, and malignancy are seriously ill.
COVID-19 is spread mostly by salivary droplets or nasal secretions when an infected person coughs or sneezes.
COVID-19 causes severe acute respiratory illness (SARS-COV-2). The first incidence was recorded in Wuhan, China, in 2019. Since then it spreads leading to a pandemic.
... Show MoreWith its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques. T
... Show More