Patients infected with the COVID-19 virus develop severe pneumonia, which typically results in death. Radiological data show that the disease involves interstitial lung involvement, lung opacities, bilateral ground-glass opacities, and patchy opacities. This study aimed to improve COVID-19 diagnosis via radiological chest X-ray (CXR) image analysis, making a substantial contribution to the development of a mobile application that efficiently identifies COVID-19, saving medical professionals time and resources. It also allows for timely preventative interventions by using more than 18000 CXR lung images and the MobileNetV2 convolutional neural network (CNN) architecture. The MobileNetV2 deep-learning model performances were evaluated using precision, sensitivity, specificity, accuracy, and F-measure to classify CXR images into COVID-19, non-COVID-19 lung opacity, and normal control. Results showed a precision of 92.91%, sensitivity of 90.6, specificity of 96.45%, accuracy of 90.6%, and F-measure of 91.74% in COVID-19 detection. Indeed, the suggested MobileNetV2 deep-learning CNN model can improve classification performance by minimising the time required to collect per-image results for a mobile application.
Abstract:
The research aims to shed light on the Corona pandemic and its repercussions on the global economy in general, and on the activities of Iraqi economic units in particular. It also aims to show the impact of the auditor’s reporting on the effects of the Corona pandemic on economic units and its reflection on the quality of his reporting. To achieve the objectives of the research, the researcher prepared a questionnaire according to the five-point Likert scale and took into account in its preparation compatibility with the characteristics of the study community, and that the target community for this questionnaire are the economic units listed in the Iraq Stock Exchange that have complet
... Show MoreMetasurface polarizers are essential optical components in modern integrated optics and play a vital role in many optical applications including Quantum Key Distribution systems in quantum cryptography. However, inverse design of metasurface polarizers with high efficiency depends on the proper prediction of structural dimensions based on required optical response. Deep learning neural networks can efficiently help in the inverse design process, minimizing both time and simulation resources requirements, while better results can be achieved compared to traditional optimization methods. Hereby, utilizing the COMSOL Multiphysics Surrogate model and deep neural networks to design a metasurface grating structure with high extinction rat
... Show MoreThis research describes a new model inspired by Mobilenetv2 that was trained on a very diverse dataset. The goal is to enable fire detection in open areas to replace physical sensor-based fire detectors and reduce false alarms of fires, to achieve the lowest losses in open areas via deep learning. A diverse fire dataset was created that combines images and videos from several sources. In addition, another self-made data set was taken from the farms of the holy shrine of Al-Hussainiya in the city of Karbala. After that, the model was trained with the collected dataset. The test accuracy of the fire dataset that was trained with the new model reached 98.87%.
Diabetic retinopathy is an eye disease in diabetic patients due to damage to the small blood vessels in the retina due to high and low blood sugar levels. Accurate detection and classification of Diabetic Retinopathy is an important task in computer-aided diagnosis, especially when planning for diabetic retinopathy surgery. Therefore, this study aims to design an automated model based on deep learning, which helps ophthalmologists detect and classify diabetic retinopathy severity through fundus images. In this work, a deep convolutional neural network (CNN) with transfer learning and fine tunes has been proposed by using pre-trained networks known as Residual Network-50 (ResNet-50). The overall framework of the proposed
... Show MoreSince the COVID-19 pandemic alarm was made by the severe acute respiratory syndrome (SARS)-coronavirus (CoV) 2, several institutions and agencies have pursued to clarify the viral virulence and infectivity. The fast propagation of this virus leads to an unprecedented rise in the number of cases worldwide. COVID-19 virus is exceptionally contagious that spreads through droplets, respiratory secretions, and direct contact. The enveloped, single-stranded RNA virus has a specific envelop region called (S) region encoding (S protein) that specifically binds to the host cell receptor. Viral infection requires receptors' participation on the host cell membrane's surface, a key- step for the viral invasion of susceptible cells.
Rec
... Show MoreThe covid-19 pandemic sweeping the world and has rendered a large proportion of the workforce as they are unable to commute to work. This has resulted in employees and employers seeking alternative work arrangements, including the software industry. Then comes the need for the global market and international presence of many companies to implement the global virtual teams (GVTs). GVTs members are gradually engaged in globalized business environments across space, time and organizational boundaries via information and communication technologies. Despite the advancement of technology, the project managers are still facing many challenges in communication. Hense, to become a successful project manager still a big challenge for them. This study
... Show MoreHealthcare professionals routinely use audio signals, generated by the human body, to help diagnose disease or assess its progression. With new technologies, it is now possible to collect human-generated sounds, such as coughing. Audio-based machine learning technologies can be adopted for automatic analysis of collected data. Valuable and rich information can be obtained from the cough signal and extracting effective characteristics from a finite duration time interval that changes as a function of time. This article presents a proposed approach to the detection and diagnosis of COVID-19 through the processing of cough collected from patients suffering from the most common symptoms of this pandemic. The proposed method is based on adopt
... Show More