General Background: Breast cancer is the most prevalent cancer affecting women, with increasing incidence worldwide. Specific Background: Recent research has focused on the role of epigenetic changes in DNA damage, repair mechanisms, and the potential therapeutic effects of probiotics. Probiotics have shown promise in promoting tissue regeneration and DNA repair. Knowledge Gap: However, the precise impact of probiotics on DNA repair in cancer cells, specifically breast cancer cells, remains underexplored. Aims: This study aimed to evaluate the effects of probiotics on DNA damage repair in AMJ13 Iraqi breast cancer cells and assess the cytotoxic effects of probiotics on these cells. Results: Using the comet assay, we found significant increases in DNA damage repair in AMJ13 cells treated with Lactobacillus plantarum (T1) and a combination of eight probiotic strains (T2). Exposure to T1 for 48 hours resulted in significant increases in tail DNA (P≤0.001), head DNA (P≤0.001), and tail moment (P<0.001), while T2 showed similar significant increases at 72 hours (P<0.05). Image analysis further supported the DNA repair potential of probiotics, as indicated by a small tail curve for treated cells. Novelty: This study provides novel insights into the therapeutic potential of probiotics in breast cancer treatment by demonstrating their capacity to enhance DNA repair mechanisms in cancer cells. Implications: The findings suggest that probiotic therapy may be a promising adjunct treatment in breast cancer, offering a new avenue for cancer management through the enhancement of DNA repair and reduction of DNA damage. Highlights: Probiotics significantly repaired DNA damage in breast cancer cells. T1 and T2 enhanced DNA repair within 48-72 hours. Probiotics offer potential as breast cancer adjunct therapy. Keywords: Breast cancer, probiotics, DNA repair, AMJ13 cells, cytotoxicity
In this study, a one-dimensional model represented by Butler-Volmer-Monod (BVM) model was proposed to compute the anode overpotential and current density in a mediator-less MFC system. The system was fueled with various organic loadings of real field petroleum refinery oily sludge to optimize the favorable organic loading for biomass to operate the suggested system. The increase in each organic loading showed higher resistance to electrons transport to the anode represented by ohmic loss. On the contrary, both activation and mass transfer losses exhibited a noticeable decrement upon the increased organic loadings. However, current density was improved throughout all increased loads achieving a maximum current density of 5.2 A/m3
... Show MoreSickle cell disease (SCD) comprises an inherited blood disorder that is life long and affects many people globally. In spite of the development in treatment, SCA is a considerable cause of mortality and morbidity. The present study tries to assess the role of leukocytes represented by β integrin(CD18) and platelets and their productivity in the pathogenicity of disease during the steady state and crisis in comparison with the healthy as-control group, SCD patients (15) enrolled during crisis and steady state (follow up) showed a significant increase in leukocytes and platelets cells productivity during crisis when compared to the steady state and in the steady state when compared to the healthy control group . In this study, SCD patho
... Show MoreThe current study deals with the performance of constructed wetland (CW) incorporating a microbial fuel cell (MFC) for wastewater treatment and electricity generation. The whole unit is referred to as CW-MFC. This technique involves two treatments; the first is an aerobic treatment which occurs in the upper layer of the system (cathode section) and the second is anaerobic biological treatment in the lower layer of the system (anode section). Two types of electrode material were tested; stainless steel and graphite. Three configurations for electrodes arrangement CW-MFC were used. In the first unit of CW-MFC, the anode was graphite plate (GPa) and cathode was also graphite plate (GPc), in the second CW-MFC unit, the anode was stainless steel
... Show MoreThe current study deals with the performance of constructed wetland (CW) incorporating a microbial fuel cell (MFC) for wastewater treatment and electricity generation. The whole unit is referred to as CW-MFC. This technique involves two treatments; the first is an aerobic treatment which occurs in the upper layer of the system (cathode section) and the second is anaerobic biological treatment in the lower layer of the system (anode section). Two types of electrode material were tested; stainless steel and graphite. Three configurations for electrodes arrangement CW-MFC were used. In the first unit of CW-MFC, the anode was graphite plate (GPa) and cathode was also graphite plate (GPc), in the second CW-MFC unit, the anode was stainless st
... Show MoreIntroduction and Aim: Klebsiella pneumoniae is a Gram-negative bacterium responsible for a wide range of infections, including respiratory tract infections (RTIs). This research was aimed to study the antibacterial and anti-biofilm effect of AgNPs produced by Gram positive and negative bacteria on RTIs associated with K. pneumoniae. Materials and Methods: The biofilm formation of K. pneumoniae was determined by tube method qualitatively from select bacterial species characterized by UV-Visible spectroscopy. The antibacterial susceptibility of the bacteria AgNPs was tested for their antibacterial and antibiofilm activity on a clinical isolate of K. pneumoniae. Results: K. pneumoniae isolated from RTIs were strong biofilm prod
... Show MoreIntroduction and Aim: Klebsiella pneumoniae is a Gram-negative bacterium responsible for a wide range of infections, including respiratory tract infections (RTIs). This research was aimed to study the antibacterial and antibiofilm effect of AgNPs produced by Gram positive and negative bacteria on RTIs associated with K. pneumoniae. Materials and Methods: The biofilm formation of K. pneumoniae was determined by tube method qualitatively from select bacterial species characterized by UV-Visible spectroscopy. The antibacterial susceptibility of the bacteria AgNPs was tested for their antibacterial and antibiofilm activity on a clinical isolate of K. pneumoniae. Results: K. pneumoniae isolated from RTIs were strong biofilm producers. The ant
... Show MoreAluminum doped zinc selenide ZnSe/n-Si thin films of (250∓20 nm) thickness with (0.01, 0.02 and 0.03), are depositing on the two type of substrate (glass and n-Si) to manufacture (ZnSe/n-Si) solar cell through using thermal vacuum evaporation procedure. physical and optoelectronic properties were examined for the samples. X-Ray and AFM techniques are using to study the structure properties. The energy band gap of as-deposited ZnSe thin films for changed dopant ratio were ranging from (2.6-2.68 eV). The results of Hall effect show that pure and doping films were (p-type), and the concentration carriers and the carriers mobility increases with increase Al-dopant ratio. The (C-V) have shown that the heterojunction were of abrupt type. In add
... Show MorePseudomonas aerogenosa lipopolysaccharidewas extracted by hot phenol method and purified by gel filtration method using the Sephadex G-200 gel and detected by the limulus amebocyt lysate (EU/ml 0.03)(Wako Chemicals USA, Inc.). The inhibitory effect of partially purified LPS on Candida glabrata yeast was studied in a microdilution method. This study found that LPS has an inhibitory effect on Candida glabrata with the lower concentrations. The inhibitory effect of LPS which treated with heating was studied under boiling and wet heat effect. The toxicity of LPS on Candida glabrata was not affected when treated with heating LPS and the results were similar to those found in untreated LPS