Polyacetal was synthesized from the reaction of PVA with para-methyoxy benzaldehyde. Polymer metal complexwas prepared by reaction with Cu, polymer blend with Chitosan was prepared through the technique of solution casting method.All prepared compounds have been characterized through FT-IR, DSC, SEM as well as the Biological activity. The FT-IR results indicated the formation of polyacetal. The DSC results indicated the thermal stability regarding prepared polymer, polymermetal complex and Chitosan polymer blends. Antibacterial potential related to synthesized polyacetal, its metal complex andChitosan blend against four types of bacteria namely, Staphylococcus aureas, Psedomonas aeruginosa, Bacillus subtilis, Escherichia coli was examined and evaluated. The results reveal that the Polyacetal-Cu complex /polymer blend has the greaterpotential to kill bacteria than Polyacetal and Polyacetal-Cu complex.
Synthesis And Studies Of Complexes Of Some Elements With 2-Mercaptohiazole (2-HMBT)
Schiff bases of Ceftizoxime sodium were synthesized in an attempt to improve the antimicrobial spectrum of Ceftizoxime. Aminothiazole ring of Ceftizoxime is linked directly through an imino group to different aromatic aldehydes reacted by nucleophilic addition using trimethylamine (TEA), as a catalyst and refluxed in methanol. The antimicrobial activity was evaluated for such Schiff bases using disc diffusion method. Molecular docking was conducted on certain penicillin-binding proteins (PBPs) and carboxypeptidases using 1- click docking software. Schiff bases of Ceftizoxime were prepared with reasonable yields and their chemical structures were confirmed by spectral analysis (FTIR, 1H-NMR) and elemental microanalysis (CHNS). The antibacter
... Show MoreA new ligand [N-(acetyl amino) thioxomethyl] valine was prepared from the reaction of acetyl iso thiocyanate with valine. The ligand was characterized by FT-IR, UV- vis and 1HNMR spectrum, The complexes with some metal ions (M +2 =Co,Ni,Cu,Zn,Cd,Hg) have been prepared and characterized. The structural diagnosis were established by IR,UV-Vis spectrum, flame atomic absorption spectroscopy conductivity and magnetic susceptibility ,the complexes showed tetrahedral geometry around the metal l.
Our goal in this research, some new nucleoside analogues was synthesized. Starting from ?-D glucose which was converted to per acetylated ?-D gluco pyronoside then converted to active from(1-Bromo Sugar (2) as a sugar moiety.The base moiety 2-substituted benzimidazole was prepared from condensation of phenylene diamine with different aromatic aldehydes, which were subjected to amino alkylation via Mannich reaction forming new nucleobase derivatives. Condensation of nucleobase with bromo sugar through nucleophilic substitution of anomeric carbon with nitrogen forming new protected nucleoside analogues then hydrolyzed with sodium methoxide in methanol to obtain our target, the free nucleoside analogues. All prepared compound were identified b
... Show MoreNew thermally stable aromatic poly(amide-imide)s ( PAI1- PAI4 ) were synthesized from direct polycondensation reaction of Terephthalic acid and Phthalic acid with two new different diamine monomers derivatives of 1,2,4,5-tetracarboxilic benzene dianhydride as a second diacides in a medium consisting of triphenyl phosphite (TPP) in N-methyl-2pyrrolidone (NMP) / pyridine solution containing dissolved calcium chloride CaCl2. The polymerization reaction produced a series of novel poly(amide-imide) in high yield. The new monomers were characterized by FTIR, 1H-NMR spectroscopy. The resulting polymers were typically characterized by means of FT-IR, 1H-NMR spectroscopy, and solubility tests. Thermal properties of the poly(amide-imide)s were als
... Show MoreStarting from bis (4,4'-diamino phenoxy) ethan(1), a variety of phenolicschiff bases (methylolic, etheric, epoxy) derivatives have been synthesized. All proposed structure were supported by FTIR, 1H-NMR, 13C-NMR Elemental analysis, some derivatives evaluated by thermal analysis (TGA).
One of the most important techniques for preparing nanoparticle material is Pulsed Laser Ablation in Liquid technique (PLAL). Carbon nanoparticles were prepared using PLAL, and the carbon target was immersed in Ultrapure water (UPW) then irradiated with Q-switched Nd:YAG laser (1064 nm) and six ns pulse duration. In this process, an Nd:YAG laser beam was focused near the carbon surface. Nanoparticles synthesized using laser irradiation were studied by observing the effects of varying incident laser pulse intensities (250, 500, 750, 1000) mJ on the particle size (20.52, 36.97, 48.72, and 61.53) nm, respectively. In addition, nanoparticles were characterized by means of the Atomic Force Microscopy (AFM) test, pH easurement
... Show More