In this paper, we made comparison among different parametric ,nonparametric and semiparametric estimators for partial linear regression model users parametric represented by ols and nonparametric methods represented by cubic smoothing spline estimator and Nadaraya-Watson estimator, we study three nonparametric regression models and samples sizes n=40,60,100,variances used σ2=0.5,1,1.5 the results for the first model show that N.W estimator for partial linear regression model(PLM) is the best followed the cubic smoothing spline estimator for (PLM),and the results of the second and the third model show that the best estimator is C.S.S.followed by N.W estimator for (PLM) ,the
... Show MoreChromium oxide nanoparticles were synthesized using cauliflower extract by two methods: simple chemical method and the sol-gel method. These technologies are new, environmentally friendly and cheap. Cauliflower contains plant materials and biomolecules (chromium, phenols, alkalis, vitamins, amino acids, quinones, etc. (that convert chromium chloride hexahydrate (CrCl3.6H2O) into chromium nanoparticles. The plant extracts also act as diluents, stabilizers and anti-caking agents. X-ray diffraction (XRD) analysis showed that the size of the crystals decreased from (36.1 to 57.8) nm using the simple chemical method to (13.31 to 20.68) nm of Cr2O3 using sol-gel.
... Show MoreThis study proposed a biometric-based digital signature scheme proposed for facial recognition. The scheme is designed and built to verify the person’s identity during a registration process and retrieve their public and private keys stored in the database. The RSA algorithm has been used as asymmetric encryption method to encrypt hashes generated for digital documents. It uses the hash function (SHA-256) to generate digital signatures. In this study, local binary patterns histograms (LBPH) were used for facial recognition. The facial recognition method was evaluated on ORL faces retrieved from the database of Cambridge University. From the analysis, the LBPH algorithm achieved 97.5% accuracy; the real-time testing was done on thirty subj
... Show MoreKirchhoff Time Migration method was applied in pre-and post-Stack Time Migration for post-processing of images collected from Balad-Samarra (BS-92) survey line that is sited across Ajeel anticline oilfield. The results showed that Ajeel anticline structure was relocated at the correct position in the migrated stacked section. The two methods (Pre and Post) of migration processing showed enhanced subsurface images and increased horizontal resolution, which was clear after the broadening the syncline and narrowing or compressing the anticline. However, each of these methods was associated with migration noise. Thus, a Post-Stack process was applied using Dip-Removal (DDMED) and Band-Pass filters to eliminate the artifact noise. The time-fr
... Show MoreFaces blurring is one of the important complex processes that is considered one of the advanced computer vision fields. The face blurring processes generally have two main steps to be done. The first step has detected the faces that appear in the frames while the second step is tracking the detected faces which based on the information extracted during the detection step. In the proposed method, an image is captured by the camera in real time, then the Viola Jones algorithm used for the purpose of detecting multiple faces in the captured image and for the purpose of reducing the time consumed to handle the entire captured image, the image background is removed and only the motion areas are processe
... Show MoreThis paper uses Artificial Intelligence (AI) based algorithm analysis to classify breast cancer Deoxyribonucleic (DNA). Main idea is to focus on application of machine and deep learning techniques. Furthermore, a genetic algorithm is used to diagnose gene expression to reduce the number of misclassified cancers. After patients' genetic data are entered, processing operations that require filling the missing values using different techniques are used. The best data for the classification process are chosen by combining each technique using the genetic algorithm and comparing them in terms of accuracy.
In the analysis of multiple linear regression, the problem of multicollinearity and auto-correlation drew the attention of many researchers, and given the appearance of these two problems together and their bad effect on the estimation, some of the researchers found new methods to address these two problems together at the same time. In this research a comparison for the performance of the Principal Components Two Parameter estimator (PCTP) and The (r-k) class estimator and the r-(k,d) class estimator by conducting a simulation study and through the results and under the mean square error (MSE) criterion to find the best way to address the two problems together. The results showed that the r-(k,d) class estimator is the best esti
... Show More