<p>The demand for internet applications has increased rapidly. Providing quality of service (QoS) requirements for varied internet application is a challenging task. One important factor that is significantly affected on the QoS service is the transport layer. The transport layer provides end-to-end data transmission across a network. Currently, the most common transport protocols used by internet application are TCP (Transmission Control Protocol) and UDP (User Datagram Protocol). Also, there are recent transport protocols such as DCCP (data congestion control protocol), SCTP (stream congestion transmission protocol), and TFRC (TCP-friendly rate control), which are in the standardization process of Internet Engineering Task Force (IETF). In this paper, we evaluate the performance of UDP, DCCP, SCTP and TFRC protocols for different traffic flows: data transmission, video traffic, and VOIP in wired networks. The performance criteria used for this evaluation include throughput, end to end delay, and packet loss rate. Well-known network simulator NS-2 used to implement the UDP, DCCP, SCTP, and TFRC protocols performance comparison. Based on the simulation results, the performance throughput of SCTP and TFRC is better than UDP. Moreover, DCCP performance is superior SCTP and TFRC in term of end-to-end delay.</p>
Turbidity is a visual property of water that expresses the amount of suspended substances in the water. Its presence in quantities more significant than the permissible limit makes the water undrinkable and reduces the effectiveness of disinfectants in treating pathogens. On this basis, turbidity is used as a basic indicator for measuring water quality. This study aims to evaluate the removal efficiency of AL- Muthanna WTP. Water turbidity was used as a basic parameter in the evaluation, using performance improvement evaluation and data from previous years (2016 to 2020). The average raw water turbidity was 26.7 NTU, with a minimum of 14 NTU, with a maximum of 48 NTU. Water turbidity value for 95% of settling daily readi
... Show MoreZigbee, which has the standard IEEE 802.15.4. It is advisable method to build wireless personal area network (WPAN) which demands a low power consumption that can be produced by Zigbee technique. Our paper gives measuring efficiency of Zigbee involving the Physical Layer (PL) and Media Access Control (MAC) sub-layer , which allow a simple interaction between the sensors. We model and simulate two different scenarios, in the first one, we tested the topological characteristics and performance of the IEEE802.15.4 standard in terms of throughput, node to node delay and figure of routers for three network layouts (Star, Mesh and Cluster Tree) using OPNET simulator. The second scenario investigates the self-healing feature on a mesh
... Show MoreThe goals of endodontic preparation were to shape and clean the space of the root canal and remove microorganisms, affected dentin and pulp, the apical foramen and the canal curve should be protected from being transported during endodontic canal preparation. The aim of this study was to evaluate the curve straightening of curved root canals and apical transportation after preparation with four rotary systems. Forty mesial roots of the lower 1st molars teeth only the mesiobuccal canals were used, these roots were immersed into cold clear acrylic , the teeth roots divided into four groups according to rotary system used for preparation of the canals (ten roots for each group):. group I: ProTaper Next rotary system, group II: IRaCe Plus rotar
... Show MoreApple slice grading is useful in post-harvest operations for sorting, grading, packaging, labeling, processing, storage, transportation, and meeting market demand and consumer preferences. Proper grading of apple slices can help ensure the quality, safety, and marketability of the final products, contributing to the post-harvest operations of the overall success of the apple industry. The article aims to create a convolutional neural network (CNN) model to classify images of apple slices after immersing them in atmospheric plasma at two different pressures (1 and 5 atm) and two different immersion times (3 and again 6 min) once and in filtered water based on the hardness of the slices usin
In data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.
This study was conducted in the poultry fields of the College of Agricultural Engineering Sciences / University of Baghdad from 10/15/2021 to 11/25/2021.To know the effect of adding different levels of Ganoderma lucidum to broiler diets on productive performance. 200 unsexed (Ross 308) chicks of one day age with a starting weight of (40) g were used. The chicks were randomly distributed into four treatments and 50 birds. One treatment included five replicates (10 birds/replicate), and the experimental treatments was as follows: T1, T2, T3, T4, and the percentages of adding reishi mushroom were 0, 0.5, 1, and 1.5 g/kg of feed, respectively, and the birds were fed on three starter diets, growth and final diets, The results of this stu
... Show MoreThis study aims at evaluating the performance of MA students in the College of Education for Women in using the digital transformation and identifying the significant difference in performance evaluation according to the variable of academic qualification (Master or PHD). In order to achieve the aim of the research the researcher prepared a questionnaire of 20 items, and this happens after the researcher's getting acquaintance of the literature of previous studies related to the variable of the research. The apparent validity of the items was examined by exposing them to 10 juries specialized in education, psychology and evaluation and measurement. The stability of the items was examined via two methods, the test-repetition and half-divisio
... Show More<p>Vehicular ad-hoc networks (VANET) suffer from dynamic network environment and topological instability that caused by high mobility feature and varying vehicles density. Emerging 5G mobile technologies offer new opportunities to design improved VANET architecture for future intelligent transportation system. However, current software defined networking (SDN) based handover schemes face poor handover performance in VANET environment with notable issues in connection establishment and ongoing communication sessions. These poor connectivity and inflexibility challenges appear at high vehicles speed and high data rate services. Therefore, this paper proposes a flexible handover solution for VANET networks by integrating SDN and
... Show MoreHigh vehicular mobility causes frequent changes in the density of vehicles, discontinuity in inter-vehicle communication, and constraints for routing protocols in vehicular ad hoc networks (VANETs). The routing must avoid forwarding packets through segments with low network density and high scale of network disconnections that may result in packet loss, delays, and increased communication overhead in route recovery. Therefore, both traffic and segment status must be considered. This paper presents real-time intersection-based segment aware routing (RTISAR), an intersection-based segment aware algorithm for geographic routing in VANETs. This routing algorithm provides an optimal route for forwarding the data packets toward their destination
... Show MoreThe aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).