The Iraqi marshes are considered the most extensive wetland ecosystem in the Middle East and are located in the middle and lower basin of the Tigris and Euphrates Rivers which create a wetlands network and comprise some shallow freshwater lakes that seasonally swamped floodplains. Al-Hawizeh marsh is a major marsh located east of Tigris River south of Iraq. This study aims to assess water quality through water quality index (WQI) and predict Total Dissolved Solids (TDS) concentrations in Al-Hawizeh marsh based on artificial neural network (ANN). Results showed that the WQI was more than 300 for years 2013 and 2014 (Water is unsuitable for drinking) and decreased within the range 200-300 in years 2015 and 2016 (Very poor water). The developed ANN mode gave a high correlation coefficient reaching 0.927 for the prediction of TDS from the model and showed high levels of TDS in Al-Hawizeh marsh that pose threats to people using the marsh for drinking and other uses. The dissolved Oxygen concentration has the highest importance of 100% in the model because the water of the marsh is fresh water, while Turbidity had the lowest importance.
The Umm Al-Naaj Marsh was chosen in Maysan province, and it is one of the sections of Mar Al-Hawza, which is one of the most prominent Iraqi marshes in the south. The marshes are located between latitudes 30 35 and 32 45 latitudes and longitudes 13 46 and 48 00. The area of the study area is 76479.432142 hectares to evaluate soil quality and health index and their spatial distribution based on measuring physical, chemical, biological and fertility traits and calculating the total quality index for those characteristics. Using an auger drilling machine, we collected 50 randomly selected surface samples, evenly distributed across the study region, from Al-Aq 0.0–0.30 m, noting their precise locations along the way. Soil health and quality w
... Show MoreThis study is conducted in order to, investigate the trophic state of Duhok Lake Dam located within Duhok city, Iraq. Water samples are collected seasonally from three monitored sites during 2011. The parameters used for assessing water quality and trophic status level include: water temperature, pH, EC, TDS, DO, BOD5, nutrients, Secchi disk transparency, and chlorophyll a. The results reveal that DO is above 5 mg.l-1 in all sites, BOD5 value is within permissible level for domestic uses. Water quality considered as a hard type. High sulfate concentration is recorded during the study period. Trophic state shows that water type is classified as mesotrophic during autumn season, while it is regarded as eutrophic in other seasons. TDN/TDP rati
... Show MoreThis search has introduced the techniques of multi-wavelet transform and neural network for recognition 3-D object from 2-D image using patches. The proposed techniques were tested on database of different patches features and the high energy subband of discrete multi-wavelet transform DMWT (gp) of the patches. The test set has two groups, group (1) which contains images, their (gp) patches and patches features of the same images as a part of that in the data set beside other images, (gp) patches and features, and group (2) which contains the (gp) patches and patches features the same as a part of that in the database but after modification such as rotation, scaling and translation. Recognition by back propagation (BP) neural network as com
... Show MoreThis search has introduced the techniques of multi-wavelet transform and neural network for recognition 3-D object from 2-D image using patches. The proposed techniques were tested on database of different patches features and the high energy subband of discrete multi-wavelet transform DMWT (gp) of the patches. The test set has two groups, group (1) which contains images, their (gp) patches and patches features of the same images as a part of that in the data set beside other images, (gp) patches and features, and group (2) which contains the (gp) patches and patches features the same as a part of that in the database but after modification such as rotation, scaling and translation. Recognition by back propagation (BP) neural network as
... Show MoreIn this paper we present a method to analyze five types with fifteen wavelet families for eighteen different EMG signals. A comparison study is also given to show performance of various families after modifying the results with back propagation Neural Network. This is actually will help the researchers with the first step of EMG analysis. Huge sets of results (more than 100 sets) are proposed and then classified to be discussed and reach the final.
In this work, microbubble dispersed air flotation technique was applied for cadmium ions removal from wastewater aqueous solution. Experiments parameters such as pH (3, 4, 5, and 6), initial Cd(II) ions concentration (40, 80, and 120 mg/l) contact time( 2, 5, 10 , 15, and 20min), and surfactant (10, 20and 40mg/l) were studied in order to optimize the best conditions .The experimental results indicate that microbubbles were quite effective in removing cadmium ions and the anionic surfactant SDS was found to be more efficient than cationic CTAB in flotation process. 92.3% maximum removal efficiency achieved through 15min at pH 5, SDS surfactant concentration 20mg/l, flow rate250 cm3/min and at 40mg/l Cd(II) ions initial co
... Show MoreThe multimetric Phytoplankton Index of Biological Integrity (P-IBI) was applied throughout Rostov on Don city (Russia) on 8 Locations in Don River from April – October 2019. The P-IBI is composed from seven metrics: Species Richness Index (SRI), Density of Phytoplankton and total biomass of phytoplankton and Relative Abundance (RA) for blue-green Algae, Green Algae, Bacillariophyceae and Euglenaphyceae Algae. The average P-IBI values fell within the range of (45.09-52.4). Therefore, water throughout the entire study area was characterized by the equally "poor" quality. Negative points of anthropogenic impact detected at the stations are: Above the city of Rostov-on-Don (1 km, higher duct Aksai) was 38.57 i
... Show MorePermeability determination in Carbonate reservoir is a complex problem, due to their capability to be tight and heterogeneous, also core samples are usually only available for few wells therefore predicting permeability with low cost and reliable accuracy is an important issue, for this reason permeability predictive models become very desirable.
This paper will try to develop the permeability predictive model for one of Iraqi carbonate reservoir from core and well log data using the principle of Hydraulic Flow Units (HFUs). HFU is a function of Flow Zone Indicator (FZI) which is a good parameter to determine (HFUs).
Histogram analysis, probability analysis and Log-Log plot of Reservoir Qua
... Show MoreCoaches and analysts face a significant challenge of inaccurate estimation when analyzing Men's 100 Meter Sprint Performance, particularly when there is limited data available. This necessitates the use of modern technologies to address the problem of inaccurate estimation. Unfortunately, current methods used to estimate Men's 100 Meter Sprint Performance indexes in Iraq are ineffective, highlighting the need to adopt new and advanced technologies that are fast, accurate, and flexible. Therefore, the objective of this study was to utilize an advanced method known as artificial neural networks to estimate four key indexes: Accelerate First of 10 meters, Speed Rate, Time First of 10 meters, and Reaction Time. The application of artifi
... Show More