The CO2-Assisted Gravity Drainage process (GAGD) has been introduced to become one of the mostinfluential process to enhance oil recovery (EOR) methods in both secondary and tertiary recovery through immiscibleand miscible mode. Its advantages came from the ability of this process to provide gravity-stable oil displacement forenhancing oil recovery. Vertical injectors for CO2 gas have been placed at the crest of the pay zone to form a gas capwhich drain the oil towards the horizontal producing oil wells located above the oil-water-contact. The advantage ofhorizontal well is to provide big drainage area and small pressure drawdown due to the long penetration. Manysimulation and physical models of CO2-AGD process have been implemented at reservoir and ambient conditions tostudy the effect of this method to improve oil recovery and to examine the most parameters that control the CO2-AGDprocess. The CO2-AGD process has been developed and tested to increase oil recovery in reservoirs with bottom waterdrive and strong water coning tendencies. In this study, a scaled prototype 3D simulation model with bottom waterdrive was used for CO2-assisted gravity drainage. The CO2-AGD process performance was studied. Also the effects ofbottom water drive on the performance of immiscible CO2 assisted gravity drainage (enhanced oil recovery and watercut) was investigated. Four different statements scenarios through CO2-AGD process were implemented. Resultsrevealed that: ultimate oil recovery factor increases considerably when implemented CO2-AGD process (from 13.5%to 84.3%). Recovery factor rises with increasing the activity of bottom water drive (from 77.5% to 84.3%). Also,GAGD process provides better reservoir pressure maintenance to keep water cut near 0% limit until gas flood frontreaches the production well if the aquifer is active, and stays near 0% limit at all prediction period for limited waterdrive.
The principal forms of radiation dosage for humans from spontaneous radiation material are being recognized as radon and its progenitors in the interior environment. Radiation-related health risks are caused by radon in water supply, which can be inhaled or ingested. Materials and Methods: The solid-state CR-39 nuclear trace detectors method was using in this research for measuring accumulation of radioactivity in water supply in different locations of Iraq's southwest corner of Baghdad. In Baghdad district, 42 samples were selected from 14 regions (3 samples out of each region) and put in dosimeters for 50 days. Results: The mean radon concentration was 49.75 Bq/m3, that is lower than the internationally recognized limit of 1100 Bq /m3. Th
... Show MoreThe software-defined network (SDN) is a new technology that separates the control plane from data plane for the network devices. One of the most significant issues in the video surveillance system is the link failure. When the path failure occurs, the monitoring center cannot receive the video from the cameras. In this paper, two methods are proposed to solve this problem. The first method uses the Dijkstra algorithm to re-find the path at the source node switch. The second method uses the Dijkstra algorithm to re-find the path at the ingress node switch (or failed link).
... Show MoreThe consumption of fossil fuels has caused many challenges, including environmental and climate damage, global warming, and rising energy costs, which has prompted seeking to substitute other alternative sources. The current study explored the microwave pyrolysis of Albizia branches to assess its potential to produce all forms of fuel (solid, liquid, gas), time savings, and effective thermal heat transfer. The impact of the critical parameters on the quantity and quality of the biofuel generation, including time, power levels, biomass weight, and particle size, were investigated. The results revealed that the best bio-oil production was 76% at a power level of 450 W and 20 g of biomass. Additionally, low power levels led to enhanced
... Show MoreKnowledge of permeability, which is the ability of rocks to transmit the fluid, is important for understanding the flow mechanisms in oil and gas reservoirs.
Permeability is best measured in the laboratory on cored rock taken from the reservoir. Coring is expensive and time-consuming in comparison to the electronic survey techniques most commonly used to gain information about permeability.
Yamama formation was chosen, to predict the permeability by using FZI method. Yamama Formation is the main lower cretaceous carbonate reservoir in southern of Iraq. This formation is made up mainly of limestone. Yamama formation was deposited on a gradually rising basin floor. The digenesis of Yamama sediments is very important due to its direct
The permeability determination in the reservoirs that are anisotropic and heterogeneous is a complicated problem due to the limited number of wells that contain core samples and well test data. This paper presents hydraulic flow units and flow zone indicator for predicting permeability of rock mass from core for Nahr-Umr reservoir/ Subba field. The Permeability measurement is better found in the laboratory work on the cored rock that taken from the formation. Nahr-Umr Formation is the main lower cretaceous sandstone reservoir in southern of Iraq. This formation is made up mainly of sandstone. Nahr-Umr formation was deposited on a gradually rising basin floor. The digenesis of Nahr-Umr sediments is very important du
... Show More
Viscosity is one of the most important governing parameters of the fluid flow, either in the porous media or in pipelines. So it is important to use an accurate method to calculate the oil viscosity at various operating conditions. In the literature, several empirical correlations have been proposed for predicting crude oil viscosity. However, these correlations are limited to predict the oil viscosity at specified conditions. In the present work, an extensive experimental data of oil viscosities collected from different samples of Iraqi oil reservoirs was applied to develop a new correlation to calculate the oil viscosity at various operating conditions either for dead, satura
... Show MoreThis study examines experimentally the performance of a horizontal triple concentric tube heat exchanger TCTHE made of copper metal using water as cooling fluid and oil-40 as hot fluid. Hot fluid enters the inner annular tube of the TCTHE in a direction at a temperature of 50, 60 and 70 oC and a flow rate of 20 l/hr. On the other hand, the cooling fluid enters the inner tube and the outer annular tube in the reverse direction (counter current flow) at a temperature of 25 oC and flow rates of 10, 15, 20, 25, 30 and 35 l/hr. The TCTHE is composed of three copper tubes with outer diameters of 34.925 mm, 22.25 mm, and 9.525 mm, and thicknesses of 1.27 mm, 1.143 mm, and 0.762 mm, respectively. TCTHE tube's length was 670
... Show MoreCO2 geo-storage efficiency is strongly influenced by the wettability of the CO2-brine-mineral system. With decreasing water-wetness, both, structural and residual trapping capacities are substantially reduced. This constitutes a serious limitation for CO2 storage particularly in oil-wet formations (which are CO2-wet). To overcome this, we treated CO2-wet calcite surfaces with nanofluids (nanoparticles dispersed in base fluid) and found that the systems turned strongly water-wet state, indicating a significant wettability alteration and thus a drastic improvement in storage potential. We thus conclude that CO2 storage capacity can be significantly enhanced by nanofluid priming.