Preferred Language
Articles
/
yoa_t4YBIXToZYAL_7Md
Numerical Analysis of Segmental Post Tensioned Concrete Beams Exposed to High Fire Temperature
...Show More Authors

The main objective of this study is to characterize the main factors which may affect the behavior of segmental prestressed concrete beams comprised of multi segments. The 3-D finite element program ABAQUS was utilized. The experimental work was conducted on twelve simply supported segmental prestressed concrete beams divided into three groups depending on the precast segments number. They all had an identical total length of 3150mm, but each had different segment numbers (9, 7, and 5 segments), in other words, different segment lengths. To simulate the genuine fire disasters, nine beams were exposed to high-temperature flame for one hour, the selected temperatures were 300°C (572°F), 500°C (932°F) and 700°C (1292°F) as recommended by ASTM–E119. Four numerical models have been utilized to represent the unburned and the burned specimens at the three elevated temperatures. Calibration and simulation of the experimental work were conducted, while comparisons were made with the experimental results. These included the prestress effect, load-deflection relation under applied load, and load at failure of the reference beam and the beams after the exposure to fire.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Aug 01 2021
Journal Name
Journal Of Composites For Construction
Prediction of Concrete Cover Separation in Reinforced Concrete Beams Strengthened with FRP
...Show More Authors

Scopus (17)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Tue Feb 28 2017
Journal Name
Journal Of Engineering
Flexural Behavior of Partially Pretensioned Continuous Concrete Beams
...Show More Authors

This paper describes flexural behavior of two spans continuous rectangular concrete beams reinforced with mild steel and partially prestressing strands, to evaluate using different prestressing level and prestressing area in continuous prestressed beams at serviceability and ultimate stages. Six continuous concrete beams with 4550 mm length reinforced with mild steel reinforcement and partially prestressed with two prestressing levels of (0.7fpy  or 0.55fpy.) of and different amount of 12.7 mm diameter seven wire steel strand were used. Test results showed that the partially prestressed reinforced beams with higher prestressing level exhibited the narrowest crack width, smallest deflection and strain in both steel and concrete at ul

... Show More
View Publication Preview PDF
Publication Date
Sat Aug 01 2020
Journal Name
Key Engineering Materials
Performance of Reinforced Concrete Beams with Multiple Openings
...Show More Authors

The present investigation focuses on the response of simply supported reinforced concrete rectangular-section beams with multiple openings of different sizes, numbers, and geometrical configurations. The advantages of the reinforcement concrete beams with multiple opening are mainly, practical benefit including decreasing the floor heights due to passage of the utilities through the beam rather than the passage beneath it, and constructional benefit that includes the reduction of the self-weight of structure resulting due to the reduction of the dead load that achieves economic design. To optimize beam self-weight with its ultimate resistance capacity, ten reinforced concrete beams having a length, width, and depth of 2700, 100, and

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (4)
Scopus Crossref
Publication Date
Sat Oct 01 2016
Journal Name
Arpn Journal Of Engineering And Applied Sciences
Numerical and experimental analysis of transient temperature and residual thermal stresses in friction stir welding of aluminum alloy 7020-T53
...Show More Authors

Scopus (2)
Scopus
Publication Date
Fri May 01 2020
Journal Name
Journal Of Engineering
Punching Shear Behavior of Reinforced Concrete Slabs under Fire using Finite Elements
...Show More Authors

The main aim of this paper is studied the punching shear and behavior of reinforced concrete slabs exposed to fires, the possibility of punching shear failure occurred as a result of the fires and their inability to withstand the loads. Simulation by finite element analysis is made to predict the type of failure, distribution temperature through the thickness of the slabs, deformation and punching strength. Nonlinear finite element transient thermal-structural analysis at fire conditions are analyzed by ANSYS package. The validity of the modeling is performed for the mechanical and thermal properties of materials from earlier works from literature to decrea

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Numerical Analysis of Under-Reamed Pile Subjected to Dynamic Loading in Sandy Soil
...Show More Authors
Abstract<p>Under-reamed piles are piles with enlarged bases, which may be single bulb or multi bulbs. Such piles are suitable for resisting considerable soil movement of filed up ground, soft clay, and loose sand and have the advantages of increasing the soil strength and decreasing the displacement. In the present study, the finite element method was used to analyse the performance of a single pile with under-reamed bulbs of different shapes, that is, single cone, double cone, and half and full sphere, embedded in homogeneous, poorly graded sandy soil. The model of under-reamed pile was made of reinforced concrete and the bulb located at the middle of the embedded length of the pile. The dynami</p> ... Show More
View Publication Preview PDF
Scopus (22)
Crossref (18)
Scopus Crossref
Publication Date
Thu Dec 01 2016
Journal Name
Journal Of Engineering
Behavior of Reinforced Concrete Continuous Beams under Pure Torsion
...Show More Authors

Practically, torsion is normally combined with flexure and shear actions. Even though, the behavior of reinforced concrete continuous beams under pure torsion is investigated in this study. It was performed on four RC continuous beams under pure torsion. In order to produce torsional moment on the external supports, an eccentric load was applied at various distances from the longitudinal axis of the RC beams until failure.

Variables considered in this study are absolute vertical displacement of the external supports, torsional moment’s capacity, angle of twist and first cracks occurrences. According to experimental results; when load eccentricity increased from 30cm to 60cm, the absolute vertical displacement i

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of The Mechanical Behavior Of Materials
Performance of doubly reinforced concrete beams with GFRP bars
...Show More Authors
Abstract<p>The study focused on examining the behavior of six concrete beams that were reinforced with glass fiber-reinforced polymer (GFRP) bars to evaluate their performance in terms of their load-carrying capacity, deflection, and other mechanical properties. The experimental investigation would provide insights into the feasibility and effectiveness of GFRP bars as an alternative to traditional reinforcement materials like steel bars in concrete structures. The GFRP bars were used in both the longitudinal and transverse directions. Each beam in the study shared the following specifications: an overall length of 2,400 mm, a clear span of 2,100 mm, and a rectangular cross-section measuring</p> ... Show More
View Publication
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Mar 23 2020
Journal Name
Journal Of Engineering
Experimental and Numerical Study on CFRP-Confined Square Concrete Compression Members Subjected to Compressive Loading
...Show More Authors

     Strengthening of the existing structures is an important task that civil engineers continuously face. Compression members, especially columns, being the most important members of any structure, are the most important members to strengthen if the need ever arise. The method of strengthening compression members by direct wrapping by Carbon Fiber Reinforced Polymer (CFRP) was adopted in this research. Since the concrete material is a heterogeneous and complex in behavior, thus, the behavior of the confined compression members subjected to uniaxial stress is investigated by finite element (FE) models created using Abaqus CAE 2017 software. The aim of this research is to study experimentally and numerically, the beha

... Show More
Crossref (3)
Crossref
Publication Date
Mon Mar 23 2020
Journal Name
Journal Of Engineering
Experimental and Numerical Study on CFRP-Confined Square Concrete Compression Members Subjected to Compressive Loading
...Show More Authors

    

Strengthening of the existing structures is an important task that civil engineers continuously face. Compression members, especially columns, being the most important members of any structure, are the most important members to strengthen if the need ever arise. The method of strengthening compression members by direct wrapping by Carbon Fiber Reinforced Polymer (CFRP) was adopted in this research. Since the concrete material is a heterogeneous and complex in behavior, thus, the behavior of the confined compression members subjected to uniaxial stress is investigated by finite element (FE) models created using Abaqus CAE 2017 software.

The aim of this research is to study experime

... Show More
View Publication Preview PDF
Crossref (3)
Crossref