In this work, synthesis of conducting polymeric films namely, PVC thin films was carried out containing Schiff base (L) with Cu2+, Cr3+, Ni2+, Co2+, in addition to inspecting the possibilities of measuring energy gap values of PVC-L-M with variety metal ions. These new polymeric films (PVC-L-M) were characterized by FTIR spectrophotometry, energy gap and surface morphology. The optical data recorded that the band gap values are influenced by the type of metals. All modified films have a red shift in optical properties in the ultraviolet region. The PVC-L-Co(II) was the lowest value of the optical band gap, 3.1 eV.
The phenyl hydrazine was react readily with acetic acid chloride in [1:2] ratio in alkyl of ethanolic solution, and refluxe for five hours to produce a new ligand of (N-Carboxymethyl-N-phenyl-hydrazino)-acetic acid [H2L].
The New Schiff base ligand 4,4'-[(1,1'-Biphenyl)-4,4'-diyl,bis-(azo)-bis-[2-Salicylidene thiosemicarbazide](HL)(BASTSC)and its complexes with Co(II), Ni(II), and Cu(II) were prepared and characterized by elemental analysis, electronic, FTIR, magnetic susceptibility measurements. The analytical and spectral data showed, the stiochiometry of the complexes to be 1:1 (metal: ligand). FTIR spectral data showed that the ligand behaves as dibasic hexadentate molecule with (N, S, O) donor sequence towards metal ions. The octahedral geometry for Co(II), Ni(II), and Cu(II) complexes and non electrolyte behavior was suggested according to the analysis data.
Schiff base ligand (H2CANPT) was prepared by two steps: first, by the condensation of curcumin with 4-amino antipyrin produces4,4'-(((1E,3Z,5Z,6E)-1,7-bis(4-hydroxy-3- methoxyphenyl)hepta-1,6-diene-3,5-diylidene)bis(azanylylidene))bis(1,5-dimethyl-2-phenyl- 1,2-dihydro-3H-pyrazol-3-one) (CANP). Second, by the condensation of (CANP) with L-tyrosine produces2,2'-(((3Z,3'Z)-(((1E,3Z,5Z,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta 1,6-diene-3,5-diylidene)bis(azanylylidene))bis(1,5-dimethyl-2-phenyl-1,2-dihydro-3-H-pyrazole- 4-yl-3-ylidene))bis(azanylylidene))bis(3-(4-hydroxyphenyl)propanoic acid) (H2CANPT). The resulted Schiff comported as hexadentate coordinated with (N4O2) atoms, then it was treated with some transition and non-transaction met
... Show MoreMixed ligands of 2-benzoyl Thiobenzimiazole (L1) with 1,10-phenanthroline (L2) complexes of Cr(III) , Ni(II) and Cu(II) ions were prepared. The ligand and the complexes were isolated and characterized in solid state by using FT-IR, UV-Vis spectroscopy, 1H, 13C-NMR, flame atomic absorption, elemental micro analysis C.H.N.S, magnetic susceptibility , melting points and conductivity measurements. 2-Benzoyl thiobenzimiazole behaves as bidenetate through oxygen atom of carbonyl group and nitrogen atom of imine group. From the analyses Octahedral geometry was suggested for all prepared complexes. A theoretical treatment of ligands and their metal complexes in gas phase were studied using HyperChem-8 program, moreover, ligands in gas phase
... Show MoreNew mixed ligand complexes of New Schiff base 4,4'- ((naphthalen-1-ylimino) methylene) dibenzene-1,3-diol and 8-hydroxy quinoline: Synthesis, Spectral Characterization, Thermal studies and Biological Activities
The researchers wanted to make a new azo imidazole as a follow-up to their previous work. The ligand 4-[(2-Amino-4-phenylazo)-methyl]-cyclohexane carboxylic acid as a derivative of trans-4-(aminomethyl) cyclohexane carboxylic acid diazonium salt, and synthesis a series of its chelate complexes with metalions, characterized these compounds using a variety technique, including elemental analysis, FTIR, LC-Mass, 1H-NMRand UV-Vis spectral process as well TGA, conductivity and magnetic quantifications. Analytical data showed that the Co (II) complex out to 1:1 metal-ligand ratio with square planner and tetrahedral geometry, respectively while 1:2 metal-ligand ratio in the Cu(II), Cr(III), Mn(II), Zn(II), Ru(III)and Rh(III)complexes
... Show MoreComplexes of Cr(III)andNi(II) ions with phthalate sulphanilate snthranillate hippurte and glycinate ions have been preparcd then the Nephelauxetic
A simple chemistry method approach was used to synthesise new ligand derivate from L-ascorbic acid and its complexes. All of them were water-soluble and are used quite extensively in the medical and pharmaceutical fields. This study synthesised the new ligand derivative from L-ascorbic acid-base using the following steps: A 5,6-O-isopropylidene-L-ascorbic acid was prepared by reacting dry acetone with L-ascorbic acid followed by reacting it with trichloroacetic acid to yield [chloro(carboxylic)methylidene]-5,6-O-isopropylidene-L-ascorbic acid in the second stage. In the third stage, the derivative was reacted with (methyl(6-methyl-2-pyridylmethyl)amine to create a new ligand (ONMILA). This novel ligand was identified using a number
... Show More