COVID-19 is a disease that has abnormal over 170 nations worldwide. The number of infected people (either sick or dead) has been growing at a worrying ratio in virtually all the affected countries. Forecasting procedures can be instructed so helping in scheming well plans and in captivating creative conclusions. These procedures measure the conditions of the previous thus allowing well forecasts around the state to arise in the future. These predictions strength helps to make contradiction of likely pressures and significances. Forecasting procedures production a very main character in elastic precise predictions. In this case study used two models in order to diagnose optimal approach by compared the outputs. This study was introduced forecasting procedures into Artificial Neural Network models compared with regression model. Data collected from Al –Kindy Teaching Hospital from the period of 28/5/2019 to 28/7/2019 show an energetic part in forecasting. Forecasting of a disease can be done founded on several parameters such as the age, gender, number of daily infections, number of patient with other disease and number of death . Though, forecasting procedures arise with their private data of tests. This study chats these tests and also offers a set of commendations for the persons who are presently hostile the global COVID-19 disease.
The global trend towards the use of fair value accounting is increasing, so the current study aimed to maximize the impact of fair value application on achieving relevance and representation faithfulness of accounting information in accordance with the common conceptual framework. To achieve the objective of this study, the researcher has determined in the theoretical framework the relationship of fair value with the characteristics of relevance and representation faithfulness of accounting information and the extent of achieving these characteristics, as well as conducting a field study by preparing a questionnaire distributed to a sample of academics (50) and auditors (50) with a total number of selected participants (100) of acad
... Show MoreInformation from 54 Magnetic Resonance Imaging (MRI) brain tumor images (27 benign and 27 malignant) were collected and subjected to multilayer perceptron artificial neural network available on the well know software of IBM SPSS 17 (Statistical Package for the Social Sciences). After many attempts, automatic architecture was decided to be adopted in this research work. Thirteen shape and statistical characteristics of images were considered. The neural network revealed an 89.1 % of correct classification for the training sample and 100 % of correct classification for the test sample. The normalized importance of the considered characteristics showed that kurtosis accounted for 100 % which means that this variable has a substantial effect
... Show MoreThis work presents the modeling of the electrical response of monocrystalline photovoltaic module by using five parameters model based on manufacture data-sheet of a solar module that measured in stander test conditions (STC) at radiation 1000W/m² and cell temperature 25 . The model takes into account the series and parallel (shunt) resistance of the module. This paper considers the details of Matlab modeling of the solar module by a developed Simulink model using the basic equations, the first approach was to estimate the parameters: photocurrent Iph, saturation current Is, shunt resistance Rsh, series resistance Rs, ideality factor A at stander test condition (STC) by an ite
... Show MoreWe have studied Bayesian method in this paper by using the modified exponential growth model, where this model is more using to represent the growth phenomena. We focus on three of prior functions (Informative, Natural Conjugate, and the function that depends on previous experiments) to use it in the Bayesian method. Where almost of observations for the growth phenomena are depended on one another, which in turn leads to a correlation between those observations, which calls to treat such this problem, called Autocorrelation, and to verified this has been used Bayesian method.
The goal of this study is to knowledge the effect of Autocorrelation on the estimation by using Bayesian method. F
... Show MoreThis paper presents a numerical simulation of the flow around elliptic groynes by using CFD software. The flow was simulated in a flume with 4m long, 0.4m wide, and 0.175m high with a constant bed slope. Moreover, the first Groyne placed at 1m from the flow inlet with a constant the Groyne height of 10cm and a 1cm thickness, and the width of Groynes equals 7cm. A submergence ratio of the elliptic Groynes of 75% was assumed, corresponding to a discharge of 0.0057m3/sec. The CFD model showed a good ability to simulate the flow around Groynes with good accuracy. The results of CFD software showed that when using double elliptic Groy
... Show MoreThis research came to shed light on the relationship between the requirements of (practices) high commitment management (participative decision making،information sharing، training and development،team working،rewards،selective staffing،job security ) and strategic entrepreneurship dimensions (entrepreneurial culture،entrepreneurial leadership،entrepreneurial mindset، strategic management resources ) Sought to achieve the number of goals the knowledge and applied, and tested the relationship and impact between variables in a sample size of 100 directors of personnel departments and divisions and their associates in the Iraqi contractors in Baghdad (Hamorabi، Mutassim، AL Rasheed، AL Mansour )، focused research
... Show MoreBackground: Birth weight is a powerful predictor of infant growth and survival. Evidence now shows that children born with low birth weight face an increased risk of chronic diseases and have many health problems including oral health. The aims of this study were to assess the salivary flow rate, viscosity, and salivary cortisol among low birth weight kindergarten children aged 5 years old in Hilla centre, in relation to dental caries and compares them with the normal birth weight children of the same age and gender. Materials and methods: The total sample involved 80 children (40 low birth weights and 40 normal birth weights) aged 5 years old. The diagnosis and recording of severity of dental caries was recorded through the application of
... Show MoreThe current study involves placing 135 boreholes drilled to a depth of 10 m below the existing ground level. Three standard penetration tests (SPT) are performed at depths of 1.5, 6, and 9.5 m for each borehole. To produce thematic maps with coordinates and depths for the bearing capacity variation of the soil, a numerical analysis was conducted using MATLAB software. Despite several-order interpolation polynomials being used to estimate the bearing capacity of soil, the first-order polynomial was the best among the other trials due to its simplicity and fast calculations. Additionally, the root mean squared error (RMSE) was almost the same for the all of the tried models. The results of the study can be summarized by the production
... Show MoreThe modern teaching methods, and their importance in achieving the desired learning goals for the individual and the society, have been addressed, as it is necessary to develop the methods, ways and strategies used in the process of teaching the intermediate stages in the various fields in general and the field of physical education in particular, the importance of research is the effect of using the strategy of similarities in teaching some basic skills of basketball for students of the second intermediate. As for the problem of research, the researcher mentioned the lack of use of teachers’ strategy method similarities in the educational units because of its importance, and after study and analysis the researcher found it necessary to i
... Show MoreThis paper includes an experimental study of hydrogen mass flow rate and inlet hydrogen pressure effect on the fuel cell performance. Depending on the experimental results, a model of fuel cell based on artificial neural networks is proposed. A back propagation learning rule with the log-sigmoid activation function is adopted to construct neural networks model. Experimental data resulting from 36 fuel cell tests are used as a learning data. The hydrogen mass flow rate, applied load and inlet hydrogen pressure are inputs to fuel cell model, while the current and voltage are outputs. Proposed model could successfully predict the fuel cell performance in good agreement with actual data. This work is extended to developed fuel cell feedback
... Show More