Soil stabilization with liquid asphalt is considered as a sustainable step towards roadway construction on problematic subgrade soil, there are no requirements to import good quality materials or to implement energy consumption, but to mix the readily available soil with liquid asphalt through the cold mix technique. In this work, collapsible soil obtained from Nasiriya was mixed with asphalt emulsion, lime, and combinations of lime and asphalt emulsion (combined stabilization) and tested in the laboratory for California bearing ratio in dry and soaked conditions. Field trial sections have been prepared with the same combinations and subjected to plate bearing test. The influence of combined stabilization on the structural properties in terms of load bearing capacity and deformation under both testing techniques have been monitored and analyzed. It was concluded that 17% of asphalt emulsion and 6% lime can furnish a suitable combined stabilization process from the structural properties requirements point of view.
Transportability refers to the ease with which people, goods, or services may be transferred. When transportability is high, distance becomes less of a limitation for activities. Transportation networks are frequently represented by a set of locations and a set of links that indicate the connections between those places which is usually called network topology. Hence, each transmission network has a unique topology that distinguishes its structure. The most essential components of such a framework are the network architecture and the connection level. This research aims to demonstrate the efficiency of the road network in the Al-Karrada area which is located in the Baghdad city. The analysis based on a quantitative evaluation using graph th
... Show MoreIn this work, ZnO nanostructures for powder ZnO were synthesized by Hydrothermal Method. Size and shape of ZnO nanostructureas can be controlled by change ammonia concentration. In the preparation of ZnO nanostructure, zinc nitrate hexahydrate [Zn(NO3)2·6H2O] was used as a precursor. The structure and morphology of ZnO nanostructure have been characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD). The synthesized ZnO nanostructures have a hexagonal wurtzite structure. Also using Zeta potential and Particle Size Analyzers and size distribution of the ZnO powder
Thin films of CdS:Cu were deposited onto glass substrate temperature 400 °c. The optieal properties have been studied for Cds doped with (1,3, 8) wt% of Cu before and after Gamma irradiation. It was found that the irradiation caused an ( Frenkel defects) where the atom is displaced from its original site leaving vacancy and forming on interstitial atom. It was found the irradiation caused an absorption edge shifting towards long wavelength as a result of the increasing of Cu concentration.
Concrete is widely used in construction materials since early 1800's. It has been known that concrete is weak in tension, so it requires some addition materials to have ductile behavior and enhance its tensile strength and strain capacity to improve their uses. In this study reactive powder concrete (RPC) was used with steel fiber by using different types of cement; (Ordinary Portland cement (OPC) and/or Portland- Limestone cement (PLC)) with three types of mixtures (OPC at the first mix, 50 % OPC and 50 % PLC at the second mix and PLC at the third mix). The behavior of RPC with steel fibers on compressive strength and tensile strength of concrete with different ages of curing (7, 14, 28 and 60) days and shrinkage have been studied. The clo
... Show MoreThis study included prepared samples of epoxy reinforced by the novolac , aluminum , glass powder and epoxy reinforced by aluminum , glass powder and epoxy alone .They are used as reinforced materials of volum fraction amounting 40% . The mechanical properties inclouded ( tensile , compressive and wear) where the wear test inclouded different applied loads (5,10,15) . From the results showed the epoxy reinforced by aluminum and glass powder has higher compressive strength (56.91) Mpa and higher tensile strength (132.2) Mpa .But the epoxy alone has higher wear rate and the epoxy reinforced by aluminum and glass powder which have higher elasticity of modulus from the tensile test (315.7) Mpa
In this study, concentrations of radon and uranium were measured for twenty six samples of soil. The radon concentrations in soil samples measured by registrant alpha-emitting radon (222Rn) by using CR-39 track detector. The uranium concentrations in soil samples measured by using registrar fission fragments tracks in CR-39 track detector that caused by the bombardment of U with thermal neutrons from 241 Am-Be neutron source that has flux of 5 ×103n cm-2 s-1.
The concentrations values were calculated by a comparison with standard samples The results show that the radon concentrations are between (91.931-30.645Bq/m3).
The results show that also the uranium concentrat
Experiments research is done to determine how saturated stiff clayey soil responds to a single impulsive load. Models made of saturated, stiff clay were investigated. To supply the single pulse energy, various falling weights from various heights were tested using the falling weight deflectometer (FWD). Dynamic effects can range from the major failure of a sensitive sensor or system to the apparent destruction of structures. This study examines the response of saturated stiff clay soil to a single impulsive load (vertical displacement at the soil surface below and beside the bearing plates). Such reactions consist of displacements, velocities, and accelerations caused by the impact occurring at the surface depth induced by the impact loads
... Show MoreIsolated Bacteria from the roots of barley were studied; two stages of processes Isolated and screening were applied in order to find the best bacteria to remove kerosene from soil. The active bacteria are isolated for kerosene degradation process. It has been found that Klebsiella pneumoniae sp. have the highest kerosene degradation which is 88.5%. The optimum conditions of kerosene degradation by Klebsiella pneumonia sp. are pH5, 48hr incubation period, 35°C temperature and 10000ppm the best kerosene concentration. The results 10000ppm showed that the maximum kerosene degradation can reach 99.58% after 48 h of incubation. Higher Kerosene degradation which was 99.83% was obtained at pH5. Kerosene degradation was found to be maximum at 3
... Show More