B3LYP density functional is utilized for probing the effect of decorating Al, Ga, and In on the sensing performance of a boron phosphide nanotube (BPNT) in detecting the 2-chloroethanol (CHE) molecule. We predict that the interaction of pure BPNT with CHE is physisorption, and the sensing response (SR) of BPNT is approximately 6.3. The adsorption energy of CHE is about − 26.3 to − 91.1, − 96.6, and − 100.3 kJ/mol, when the Al, Ga, and In metals are decorated on the BPNT surface, respectively. This indicates that the decorated metals significantly strength the interaction. Also, the corresponding SR meaningfully rises to 19.4, 41.0, and 93.4, indicating that by increasing the atomic number of metals, the sensitivity is increased. Therefore, we found that In-decorating much more increases the sensitivity of BPNT toward CHE. The SR of metal-decorated BPNT decreases in the water solvent. Our theoretical results further support the fact that the metal-decorated BP nanostructures have practical applications.
this paper presents a novel method for solving nonlinear optimal conrol problems of regular type via its equivalent two points boundary value problems using the non-classical
In this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.
The major goal of this research was to use the Euler method to determine the best starting value for eccentricity. Various heights were chosen for satellites that were affected by atmospheric drag. It was explained how to turn the position and velocity components into orbital elements. Also, Euler integration method was explained. The results indicated that the drag is deviated the satellite trajectory from a keplerian orbit. As a result, the Keplerian orbital elements alter throughout time. Additionally, the current analysis showed that Euler method could only be used for low Earth orbits between (100 and 500) km and very small eccentricity (e = 0.001).
This paper describes the digital chaotic signal with ship map design. The robust digital implementation eliminates the variation tolerance and electronics noise problems common in analog chaotic circuits. Generation of good non-repeatable and nonpredictable random sequences is of increasing importance in security applications. The use of 1-D chaotic signal to mask useful information and to mask it unrecognizable by the receiver is a field of research in full expansion. The piece-wise 1-D map such as ship map is used for this paper. The main advantages of chaos are the increased security of the transmission and ease of generation of a great number of distinct sequences. As consequence, the number of users in the systems can be increased. Rec
... Show MoreIn the beta decay process, a neutron converts into a proton, or vice versa, so the atom in this process changes to a more stable isobar. Bethe-Weizsäcker used a quasi-experimental formula in the present study to find the most stable isobar for isobaric groups of mass nuclides (A=165-175). In a group of isobars, there are two methods of calculating the most stable isobar. The most stable isobar represents the lowest parabola value by calculating the binding energy value (B.E) for each nuclide in this family, and then drawing these binding energy values as a function of the atomic number (Z) in order to obtain the mass parabolas, the second method is by calculating the atomic number value of the most stable isobar (ZA). The results show
... Show MoreScleral acrylic resin is widely used to synthesize ocular prosthesis. However, the properties of this material change over time, thus requiring the prosthesis to be refabricated. Many studies were conducted to improve these properties by reinforcing this material with nanoparticles. This study aims to evaluate the effect of silver nanoparticle powder on the mechanical properties (transverse flexural strength, impact strength, shear bond strength, surface microhardness, and surface roughness) of scleral acrylic resin used for ocular prostheses. Two concentrations were selected from the pilot study and evaluated for their effects on scleral acrylic resin properties. According to the pilot study, 0.01 and 0.02wt% AgNPs powder improved
... Show MoreNanofluids are proven to be efficient agents for wettability alteration in subsurface applications including enhanced oil recovery (EOR). Nanofluids can also be used for CO2-storage applications where the CO2-wet rocks can be rendered strongly water-wet, however no attention has been given to this aspect in the past. Thus in this work we presents contact angle (θ) measurements for CO2/brine/calcite system as function of pressure (0.1 MPa, 5 MPa, 10 MPa, 15 MPa, and 20 MPa), temperature (23 °C, 50 °C and 70 °C), and salinity (0, 5, 10, 15, and 20% NaCl) before and after nano-treatment to address the wettability alteration efficiency. Moreover, the effect of treatment pressure and temperature, treatment fluid concentration (SiO2 wt%) and
... Show MoreIn the present work the Buildup factor for gamma rays were studied in shields from epoxy reinforced by lead powder and by aluminum powder, for NaI(Tl) scintillation detector size ( ×? ), using two radioactive sources (Co-60 and Cs-137). The shields which are used (epoxy reinforced by lead powder with concentration (10-60)% and epoxy reinforced by aluminum powder with concentration (10-50)% by thick (6mm) and epoxy reinforced by lead powder with concentration (50%) with thick (2,4,6,8,10)mm. The experimental results show that: The linear absorption factor and Buildup factor increase with increase the concentration for the powders which used in reinforcement and high for aluminum powder than the lead powder and decrease with inc
... Show More