B3LYP density functional is utilized for probing the effect of decorating Al, Ga, and In on the sensing performance of a boron phosphide nanotube (BPNT) in detecting the 2-chloroethanol (CHE) molecule. We predict that the interaction of pure BPNT with CHE is physisorption, and the sensing response (SR) of BPNT is approximately 6.3. The adsorption energy of CHE is about − 26.3 to − 91.1, − 96.6, and − 100.3 kJ/mol, when the Al, Ga, and In metals are decorated on the BPNT surface, respectively. This indicates that the decorated metals significantly strength the interaction. Also, the corresponding SR meaningfully rises to 19.4, 41.0, and 93.4, indicating that by increasing the atomic number of metals, the sensitivity is increased. Therefore, we found that In-decorating much more increases the sensitivity of BPNT toward CHE. The SR of metal-decorated BPNT decreases in the water solvent. Our theoretical results further support the fact that the metal-decorated BP nanostructures have practical applications.
The flexible joint robot manipulators provide various benefits, but also present many control challenges such as nonlinearities, strong coupling, vibration, etc. This paper proposes optimal second order integral sliding mode control (OSOISMC) for a single link flexible joint manipulator to achieve robust and smooth performance. Firstly, the integral sliding mode control is designed, which consists of a linear quadratic regulator (LQR) as a nominal control, and switching control. This control guarantees the system robustness for the entire process. Then, a nonsingularterminal sliding surface is added to give a second order integral sliding mode control (SOISMC), which reduces chartering effect and gives the finite time convergence as well. S
... Show MoreMachine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To
... Show MoreThe issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of
... Show MoreObjectives The strategies of tissue-engineering led to the development of living cell-based therapies to repair lost or damaged tissues, including periodontal ligament and to construct biohybrid implant. This work aimed to isolate human periodontal ligament stem cells (hPDLSCs) and implant them on fabricated polycaprolactone (PCL) for the regeneration of natural periodontal ligament (PDL) tissues. Methods hPDLSCs were harvested from extracted human premolars, cultured, and expanded to obtain PDL cells. A PDL-specific marker (periostin) was detected using an immunofluorescent assay. Electrospinning was applied to fabricate PCL at three concentrations (13%, 16%, and 20% weight/volume) in two forms, which were examined through field emission
... Show MoreThis article presents a new cascaded extended state observer (CESO)-based sliding-mode control (SMC) for an underactuated flexible joint robot (FJR). The control of the FJR has many challenges, including coupling, underactuation, nonlinearity, uncertainties and external disturbances, and the noise amplification especially in the high-order systems. The proposed control integrates the CESO and SMC, in which the CESO estimates the states and disturbances, and the SMC provides the system robustness to the uncertainty and disturbance estimation errors. First, a dynamic model of the FJR is derived and converted from an underactuated form to a canonical form via the Olfati transformation and a flatness approach, which reduces the complexity of th
... Show MoreThe present study aims to get experimentally a deeper understanding of the efficiency of carbon fiber-reinforced polymer (CFRP) sheets applied to improve the torsional behavior of L-shaped reinforced concrete spandrel beams in which their ledges were loaded in two stages under monotonic loading. An experimental program was conducted on spandrel beams considering different key parameters including the cross-sectional aspect ratio (