B3LYP density functional is utilized for probing the effect of decorating Al, Ga, and In on the sensing performance of a boron phosphide nanotube (BPNT) in detecting the 2-chloroethanol (CHE) molecule. We predict that the interaction of pure BPNT with CHE is physisorption, and the sensing response (SR) of BPNT is approximately 6.3. The adsorption energy of CHE is about − 26.3 to − 91.1, − 96.6, and − 100.3 kJ/mol, when the Al, Ga, and In metals are decorated on the BPNT surface, respectively. This indicates that the decorated metals significantly strength the interaction. Also, the corresponding SR meaningfully rises to 19.4, 41.0, and 93.4, indicating that by increasing the atomic number of metals, the sensitivity is increased. Therefore, we found that In-decorating much more increases the sensitivity of BPNT toward CHE. The SR of metal-decorated BPNT decreases in the water solvent. Our theoretical results further support the fact that the metal-decorated BP nanostructures have practical applications.
In this work, the modified Lyapunov-Schmidt reduction is used to find a nonlinear Ritz approximation of Fredholm functional defined by the nonhomogeneous Camassa-Holm equation and Benjamin-Bona-Mahony. We introduced the modified Lyapunov-Schmidt reduction for nonhomogeneous problems when the dimension of the null space is equal to two. The nonlinear Ritz approximation for the nonhomogeneous Camassa-Holm equation has been found as a function of codimension twenty-four.
In this work, silicon nitride (Si3N4) thin films were deposited on metallic substrates (aluminium and titanium sheets) by the DC reactive sputtering technique using two different silicon targets (n-type and p-type Si wafers) as well as two Ar:N2 gas mixing ratios (50:50 and 70:30). The electrical conductivity of the metallic (aluminium and titanium) substrates was measured before and after the deposition of silicon nitride thin films on both surfaces of the substrates. The results obtained from this work showed that the deposited films, in general, reduced the electrical conductivity of the substrates, and the thin films prepared from n-type silicon targets using a 50:50 mixing ratio and deposited on both
... Show MoreA general velocity profile for a laminar flow over a flat plate with zero incidence is obtained by employing a new boundary condition to the other available boundary conditions. The general velocity profile is mathematically simple and nearest to the exact solution. Also other related values, boundary layer thickness, displacement thickness, momentum thickness and coefficient of friction are nearest to the exact solution compared with other corresponding values for other researchers.
The centers of cities and historical quarter are exposed to a severe threat to the values of the physical and legal urban environment as a result of the value deterioration and the emergence, emergence and spread of new values on the intellectual and urban context, which generates the loss of the urban environment for its spatio-temporal continuity, flexibility, adaptation and continuity, and thus urban obsolescence, Hence the problem of the research in “the lack of comprehensiveness of studies on the phenomenon of urban obsolescence and its impact on the decline in the values of the quality of the built environment in historic
... Show MoreSequence covering array (SCA) generation is an active research area in recent years. Unlike the sequence-less covering arrays (CA), the order of sequence varies in the test case generation process. This paper reviews the state-of-the-art of the SCA strategies, earlier works reported that finding a minimal size of a test suite is considered as an NP-Hard problem. In addition, most of the existing strategies for SCA generation have a high order of complexity due to the generation of all combinatorial interactions by adopting one-test-at-a-time fashion. Reducing the complexity by adopting one-parameter- at-a-time for SCA generation is a challenging process. In addition, this reduction facilitates the supporting for a higher strength of cove
... Show MoreThe optimum conditions for the production of neutral protease from local strain Aspergillus niger var carbonarius by solid – state fermentation system (Wheat bran) moisted with 0.2 M phosphate buffer (PH7.0) . the hydration ratio was 1:5 (V:W) . the concentration of inoculum was 1×106 spores per 10 gram of solid materials , initial P H 6.5 and 96 hours of incubation period at 30? C .the enzyme activity was 1300 unit / ml and specific activity was 1550 unit / mg protein .
Background: Although underdeveloped in Iraq, telehealth was one tool used to continue health service provision during the COVID-19 pandemic. Aim: To assess women’s experiences and satisfaction with gynaecological and obstetric telehealth services in Iraq during the COVID-19 pandemic. Methods: Free telehealth services were provided by 4 obstetrician-gynaecologists associated with private clinics in 2020–2021. All patients who accessed the services between June 2020 and February 2021 were invited to complete a postconsultation survey on their experience and satisfaction with services. Results were analysed using descriptive statistics and logistic regression conducted using SPSS version 25. Results: A total of 151 (30.2%) women re
... Show MoreAbstract
Knowing the amount of residual stresses and find technological solutions to minimize and control them during the production operation are an important task because great levels of deformation which occurs in single point incremental forming (SPIF), this induce highly non-uniform residual stresses. In this papera propose of a method for multilayer single point incremental forming with change in thickness of the top plate (0.5, 0.7, 0.9) mm and lubrication or material between two plates(polymer, grease, grease with graphite, mos2) to knowing an effect of this method and parameters on residual stresses for the bottom plates. Also compare these results for the
... Show MoreThis paper is concerned with the solution of the nanoscale structures consisting of the with an effective mass envelope function theory, the electronic states of the quantum ring are studied. In calculations, the effects due to the different effective masses of electrons in and out the rings are included. The energy levels of the electron are calculated in the different shapes of rings, i.e., that the inner radius of rings sensitively change the electronic states. The energy levels of the electron are not sensitively dependent on the outer radius for large rings. The structures of quantum rings are studied by the one electronic band Hamiltonian effective mass approximati
... Show More