In the present study, magnet silica-coated Ag2WO4/Ag2S nanocomposites (FOSOAWAS) were fabricated via a multistep method to address the drawbacks related to single photocatalysts (pure Ag2WO4 and pure Ag2S) and to clarify the significant influence of semiconductor heterojunction on the enhancement of visible-light-driven organic degradation. Different techniques were performed to investigate the elemental composition, morphology, magnetic and photoelectrochemical properties of the fabricated FOSOAWAS photocatalyst. The FOSOAWAS photocatalyst (1 g/L) exhibited excellent photodegradation efficiency (99.5%) against Congo red dye (CR = 20 ppm) after 140 min of visible-light illumination. This result confirmed the ability of the heterojunction between Ag2WO4 and Ag2S species to improve the efficiency of the photogenerated electron/hole pair separation and to reduce their recombination. The kinetics studies of CR photoreaction suggested that the photodegradation rate of the FOSOAWAS photocatalyst was 3.26 and 2.94 times higher than that of pure Ag2WO4 and Ag2S NPs, respectively. The CR dye was investigated under various operating conditions (FOSOAWAS dosage, CR concentration, and pH of solution). The trapping experiments proved the significant roles of H2O2, •OH, and h+ oxidants in the photoreaction of CR dye. The proposed mechanism explains that the Type I heterojunction between Ag2WO4 and Ag2S semiconductors was responsible for the improved photocatalytic activity of the FOSOAWAS nanocomposite. Finally, the reusability and stability experiments proved the sufficient stability and facile separation of FOSOAWAS heterojunction, which may be employed in practical applications.
World statistics proved that the most of work dangerous accidents, which causes death, are occurred in the construction works. These accidents related to many causes such as loss of workers experience and ignoring rules of safety requirements, especially young workers. Due to the risk of accidents that may occur in the site of work, the idea of this study crystallized to show the relationship between the age of worker and number of injuries and accidents, to identify the causes of these injuries, and to put the appropriate solutions to avoid or reduce the risk of work injuries. Also, the research shows the main principles of safety requirements to forming a clear picture about the subject of the study. A questioner form was prepared to c
... Show MoreBackground: Periodontitis and type 2 diabetes mellitus are both considered as a chronic disease that affect many people and have an interrelationship in their pathogenesis. Objective: The aim is to evaluate the salivary levels of interleukin-17 (IL-17) and galectin-3 in patients with periodontitis and type-2 diabetes mellitus. Materials and Methods: The samples were gathered from 13 healthy (control group) and 75 patients split into 3 groups, 25 patients with type 2 diabetes mellitus and healthy periodontium (T2DM group), 25 patients with generalized periodontitis (P group), and 25 patients with generalized periodontitis and type 2 diabetes mellitus (P-T2DM group). Clinical periodontal parameters were documented. The concentration of IL-17
... Show MoreThe multi-dentate Schiff base ligand (H2L), where H2L=2,2'-(((1,3,5,6)-1-(3-((l1-oxidaneyl)-l5-methyl)-4-hydroxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)hepta-1,6-di ene-3,5-diylidene)bis(azaneylylidene))bis(3-(4-hydroxyphenyl)propanoic acid), has been prepared from curcumin and L- Tyrosine amino acid. The synthesized Schiff base ligand (H2L) and the second ligand 1,10-phenanthroline (phen) are used to prepare the new complexes [Al(L)(phen)]Cl, K[Ag(L)(phen)] and [Pb(L)(phen)]. The synthesized compounds are characterized by magnetic susceptibility measurements, micro elemental analysis (C.H.N), mass spectrometry, molar conductance, FT-infrared, UV-visible, atomic absorption (AA), 13C-NMR, and 1H-NMR spectral studies. The characterization of the
... Show MoreThe present study aimed to look for the differences in the oxidative stress status in sera and saliva samples of type 2 diabetic Iraqi patients with and without proliferative diabetic retinopathy. As well as to look for the possibility whether this status can be measured in saliva as an alternative sample to that of serum, hence to achieve that total oxidant status, total antioxidant status and oxidative stress index were measured in both sera and saliva samples of two groups of patients with type 2 diabetes mellitus and the healthy individuals. Upon the comparison between patients without proliferative diabetic retinopathy and the control sample the results showed presence of a significant increase (p < 0.05) of total oxidant st
... Show MoreIn this study, gold nanoparticle samples were prepared by the chemical reduction method (seed-growth) with 4 ratios (10, 12, 15 and 18) ml of seed, and the growth was stationary at 40 ml. The optical and structural properties of these samples were studied. The 18 ml seed sample showed the highest absorbance. The X- ray diffraction (XRD) patterns of these samples showed clear peaks at (38.25o, 44.5o, 64.4o, and 77.95o). The UV-visible showed that the absorbance of all the samples was in the same range as the standard AuNPs. The field emission-scanning electron microscope (FE-SEM) showed the shape of AuNPs as nanorods and the particle size between 30-50 nm. Rhodamine-610 (RhB) was prepared at 10<
... Show MoreThis work aim to prepare Ag/R6G/PMMA nanocomposite thin
films by In-situ plasma polymerization and study the changes in the
optical properties of fluorophore due to the presence of Ag
nanoparticles structures in the vicinity of the R6G laser dye. The
concentrations of R6G dye/MMA used are: 10-4M solutions were
prepared by dissolving the required quantity of the R6G dye in
MMAMonomer. Then Silver nanoparticles with 50 average particles
size were mixed with MMAmonomer with concentration of 0.3, 0.5,
0.7wt% to get R6G silver/MMA in liquid phase. The films were
deposited on glass substrates by dielectric barrier discharge plasma
jet. The Ag/R6G/PMMA nanocomposite thin films were
characterization by UV-Visible
The 3D electro-Fenton technique is, due to its high efficiency, one of the technologies suggested to eliminate organic pollutants in wastewater. The type of particle electrode used in the 3D electro-Fenton process is one of the most crucial variables because of its effect on the formation of reactive species and the source of iron ions. The electrolytic cell in the current study consisted of graphite as an anode, carbon fiber (CF) modified with graphene as a cathode, and iron foam particles as a third electrode. A response surface methodology (RSM) approach was used to optimize the 3D electro-Fenton process. The RSM results revealed that the quadratic model has a high R2 of 99.05 %. At 4 g L-1 iron foam particles, time of 5 h, and
... Show Morein the present article, we present the peristaltic motion of “Hyperbolic Tangent nanofluid” by a porous area in a two dimensional non-regular a symmetric channel with an inclination under the impact of inclination angle under the impact of inclined magnetic force, the convection conditions of “heat and mass transfer” will be showed. The matter of the paper will be further simplified with the assumptions of long wave length and less “Reynolds number”. we are solved the coupled non-linear equations by using technical analysis of “Regular perturbation method” of series solutions. We are worked out the basic equations of continuity, motion, temperature, and volume fraction