Spatial data observed on a group of areal units is common in scientific applications. The usual hierarchical approach for modeling this kind of dataset is to introduce a spatial random effect with an autoregressive prior. However, the usual Markov chain Monte Carlo scheme for this hierarchical framework requires the spatial effects to be sampled from their full conditional posteriors one-by-one resulting in poor mixing. More importantly, it makes the model computationally inefficient for datasets with large number of units. In this article, we propose a Bayesian approach that uses the spectral structure of the adjacency to construct a low-rank expansion for modeling spatial dependence. We propose a pair of computationally efficient estimation schemes that select the functions most important to capture the variation in response. Through simulation studies, we validate the computational efficiency as well as predictive accuracy of our method. Finally, we present an important real-world application of the proposed methodology on a massive plant abundance dataset from Cape Floristic Region in South Africa. © 2019 Elsevier B.V.
This contribution investigates structural, electronic, and optical properties of cubic barium titanate (BaTiO3) perovskites using first-principles calculations of density functional theory (DFT). Generalized gradient approximations (GGA) alongside with PW91 functional have been implemented for the exchange–correlation potential. The obtained results display that BaTiO3 exhibits a band gap of 3.21 eV which agrees well with the previously experimental and theoretical literature. Interestingly, our results explore that when replacing Pd atom with Ba and Ti atoms at 0.125 content a clear decrease in the electronic band gap of 1.052 and 1.090 eV located within the visible range of electromagnetic wavelengths (EMW). Optical parameters such as a
... Show MoreAbstract
The catalytic cracking conversion of Iraqi vacuum gas oil was studied on large and medium pore size (HY, HX, ZSM-22 and ZSM-11) of zeolite catalysts. These catalysts were prepared locally and used in the present work. The catalytic conversion performed on a continuous fixed-bed laboratory reaction unit. Experiments were performed in the temperature range of 673 to 823K, pressure range of 3 to 15bar, and LHSV range of 0.5-3h-1. The results show that the catalytic conversion of vacuum gas oil increases with increase in reaction temperature and decreases with increase in LHSV. The catalytic activity for the proposed catalysts arranged in the following order:
HY>H
... Show MoreTo obtain the approximate solution to Riccati matrix differential equations, a new variational iteration approach was proposed, which is suggested to improve the accuracy and increase the convergence rate of the approximate solutons to the exact solution. This technique was found to give very accurate results in a few number of iterations. In this paper, the modified approaches were derived to give modified solutions of proposed and used and the convergence analysis to the exact solution of the derived sequence of approximate solutions is also stated and proved. Two examples were also solved, which shows the reliability and applicability of the proposed approach.
Data hiding is the process of encoding extra information in an image by making small modification to its pixels. To be practical, the hidden data must be perceptually invisible yet robust to common signal processing operations. This paper introduces a scheme for hiding a signature image that could be as much as 25% of the host image data and hence could be used both in digital watermarking as well as image/data hiding. The proposed algorithm uses orthogonal discrete wavelet transforms with two zero moments and with improved time localization called discrete slantlet transform for both host and signature image. A scaling factor ? in frequency domain control the quality of the watermarked images. Experimental results of signature image
... Show MoreSurvival analysis is one of the types of data analysis that describes the time period until the occurrence of an event of interest such as death or other events of importance in determining what will happen to the phenomenon studied. There may be more than one endpoint for the event, in which case it is called Competing risks. The purpose of this research is to apply the dynamic approach in the analysis of discrete survival time in order to estimate the effect of covariates over time, as well as modeling the nonlinear relationship between the covariates and the discrete hazard function through the use of the multinomial logistic model and the multivariate Cox model. For the purpose of conducting the estimation process for both the discrete
... Show MoreIn the present work, poly methyl methacrylate (PMMA) doped with Rhodamine 6G was prepared. The spectral properties (absorption and fluorescence) of the films were studied at different concentrations (1x10-5, 2x10-5, 5x10-5, 7x10-5, and 1x10-4mol/l). The investigated samples were made in the form of thin films. This was achieved by dissolving a certain weight of PMMA in a fixed volume of chloroform, composite films was with thickness (25.8μm) at room temperature. The achieved results were pointed out that absorption and fluorescence spectra have taken a wide spectral rang so when increased the concentratio
... Show MoreSoil that has been contaminated by heavy metals is a serious environmental problem. A different approach for forecasting a variety of soil physical parameters is reflected spectroscopy is a low-cost, quick, and repeatable analytical method. The objectives of this paper are to predict heavy metal (Ti, Cr, Sr, Fe, Zn, Cu and Pb) soil contamination in central and southern Iraq using spectroscopy data. An XRF was used to quantify the levels of heavy metals in a total of 53 soil samples from Baghdad and ThiQar, and a spectrogram was used to examine how well spectral data might predict the presence of heavy metals metals. The partial least squares regression PLSR models performed well in pr
In this research, we dealt with the study of the Non-Homogeneous Poisson process, which is one of the most important statistical issues that have a role in scientific development as it is related to accidents that occur in reality, which are modeled according to Poisson’s operations, because the occurrence of this accident is related to time, whether with the change of time or its stability. In our research, this clarifies the Non-Homogeneous hemispheric process and the use of one of these models of processes, which is an exponentiated - Weibull model that contains three parameters (α, β, σ) as a function to estimate the time rate of occurrence of earthquakes in Erbil Governorate, as the governorate is adjacent to two countr
... Show More