Spatial data observed on a group of areal units is common in scientific applications. The usual hierarchical approach for modeling this kind of dataset is to introduce a spatial random effect with an autoregressive prior. However, the usual Markov chain Monte Carlo scheme for this hierarchical framework requires the spatial effects to be sampled from their full conditional posteriors one-by-one resulting in poor mixing. More importantly, it makes the model computationally inefficient for datasets with large number of units. In this article, we propose a Bayesian approach that uses the spectral structure of the adjacency to construct a low-rank expansion for modeling spatial dependence. We propose a pair of computationally efficient estimation schemes that select the functions most important to capture the variation in response. Through simulation studies, we validate the computational efficiency as well as predictive accuracy of our method. Finally, we present an important real-world application of the proposed methodology on a massive plant abundance dataset from Cape Floristic Region in South Africa. © 2019 Elsevier B.V.
Abstract:
In this research we discussed the parameter estimation and variable selection in Tobit quantile regression model in present of multicollinearity problem. We used elastic net technique as an important technique for dealing with both multicollinearity and variable selection. Depending on the data we proposed Bayesian Tobit hierarchical model with four level prior distributions . We assumed both tuning parameter are random variable and estimated them with the other unknown parameter in the model .Simulation study was used for explain the efficiency of the proposed method and then we compared our approach with (Alhamzwi 2014 & standard QR) .The result illustrated that our approach
... Show MoreIn this paper we used frequentist and Bayesian approaches for the linear regression model to predict future observations for unemployment rates in Iraq. Parameters are estimated using the ordinary least squares method and for the Bayesian approach using the Markov Chain Monte Carlo (MCMC) method. Calculations are done using the R program. The analysis showed that the linear regression model using the Bayesian approach is better and can be used as an alternative to the frequentist approach. Two criteria, the root mean square error (RMSE) and the median absolute deviation (MAD) were used to compare the performance of the estimates. The results obtained showed that the unemployment rates will continue to increase in the next two decade
... Show MoreIn this paper, a construction microwave induced plasma jet(MIPJ) system was used to produce a non-thermal plasma jet at atmospheric pressure, at standard frequency of 2.45 GHz and microwave power of 800 W. The working gas Argon (Ar) was supplied to flow through the torch with adjustable flow rate using flow meter regulator. The influence of the MIPJ parameters such as applied voltage and argon gas flow rate on macroscopic microwave plasma parameters were studied. The macroscopic parameters results show increasing of microwave plasma jet length with increasing of applied voltage, argon gas flow rate where the plasma jet length exceed 12 cm as maximum value. While the increasing of argon gas flow rate will cause increasing into the ar
... Show MoreAt atmospheric pressure and at a frequency of 9.1 kHz, a constructed magnetically stabilized tornado gliding arc discharge (MSGAD) system was utilized in this study to generate a non-thermal plasma with an alternating voltage source from 2,4,6,8 to 10 kV. Argon gas was used to generate the arc plasma with an adjustable flow rate using a flow meter regulator to stabilize the gas flow rate to 2 L/min. A gliding plasma discharge is achieved by a magnetic field for the purpose of a planned investigation. The influence of the magnetically stabilized tornado gliding arc discharge parameters such as magnetic field and applied voltage on microscopic tornado plasma parameters was studied. The electron temperature1was measured using a Boltzmann plot
... Show MoreThe goal of this research is to introduce the concepts of Large-small submodule and Large-hollow module and some properties of them are considered, such that a proper submodule N of an R-module M is said to be Large-small submodule, if N + K = M where K be a submodule of M, then K is essential submodule of M ( K ≤e M ). An R-module M is called Large-hollow module if every proper submodule of M is Large-small submodule in M.
This research estimates the effect of independent factors like filler (3%, 6%, 9%, 11% weight fraction), normal load (5N, 10N, 15N), and time sliding (5,7 , 9 minutes) on wear behavior of unsaturated polyester resin reinforced with jute fiber and waste eggshell and, rice husk powder composites by utilizing a statistical approach. The specimens polymeric composite prepared from resin unsaturated polyester filled with (4% weight fraction) jute fiber, and (3%, 6%, 9%, 11% weight fraction) eggshell, and rice husk by utilizing (hand lay-up) molding. Dry sliding wear experiments were carried utilizing a standard (pin on disc test setup) following a well designed empirical schedule that depends on Taguchi’s experimental design L9 (MINIT
... Show MoreProjects suspensions are between the most insistent tasks confronted by the construction field accredited to the sector’s difficulty and its essential delay risk foundations’ interdependence. Machine learning provides a perfect group of techniques, which can attack those complex systems. The study aimed to recognize and progress a wellorganized predictive data tool to examine and learn from delay sources depend on preceding data of construction projects by using decision trees and naïve Bayesian classification algorithms. An intensive review of available data has been conducted to explore the real reasons and causes of construction project delays. The results show that the postpo
Tight reservoirs have attracted the interest of the oil industry in recent years according to its significant impact on the global oil product. Several challenges are present when producing from these reservoirs due to its low to extra low permeability and very narrow pore throat radius. Development strategy selection for these reservoirs such as horizontal well placement, hydraulic fracture design, well completion, and smart production program, wellbore stability all need accurate characterizations of geomechanical parameters for these reservoirs. Geomechanical properties, including uniaxial compressive strength (UCS), static Young’s modulus (Es), and Poisson’s ratio (υs), were measured experimentally using both static and dynamic met
... Show More