Spatial data observed on a group of areal units is common in scientific applications. The usual hierarchical approach for modeling this kind of dataset is to introduce a spatial random effect with an autoregressive prior. However, the usual Markov chain Monte Carlo scheme for this hierarchical framework requires the spatial effects to be sampled from their full conditional posteriors one-by-one resulting in poor mixing. More importantly, it makes the model computationally inefficient for datasets with large number of units. In this article, we propose a Bayesian approach that uses the spectral structure of the adjacency to construct a low-rank expansion for modeling spatial dependence. We propose a pair of computationally efficient estimation schemes that select the functions most important to capture the variation in response. Through simulation studies, we validate the computational efficiency as well as predictive accuracy of our method. Finally, we present an important real-world application of the proposed methodology on a massive plant abundance dataset from Cape Floristic Region in South Africa. © 2019 Elsevier B.V.
Random matrix theory is used to study the chaotic properties in nuclear energy spectrum of the 24Mg nucleus. The excitation energies (which are the main object of this study) are obtained via performing shell model calculations using the OXBASH computer code together with an effective interaction of Wildenthal (W) in the isospin formalism. The 24Mg nucleus is assumed to have an inert 16O core with 8 nucleons (4protons and 4neutrons) move in the 1d5/2, 2s1/2 and 1d3/2 orbitals. The spectral fluctuations are studied by two statistical measures: the nearest neighb
This study is concerned with the effect of adding two kinds of ceramic materials on the mechanical properties of (Al-7%Si- 0.3%Mg) alloy, which are zirconia with particle size (20μm > P.S ≥ 0.1μm) and alumina with particle size (20μm > P.S ≥ 0.1μm) and adding them to the alloy with weight ratios (0.2, 0.4, 0.6, 0.8 and 1%). Stirring casting method has been used to make composite material by using vortex technique which is used to pull the particles to inside the melted metals and distributed them homogenously.
After that solution treatment was done to the samples at (520ºC) and artificial ageing at (170ºC) in different times, it has been noticed that the values of hardness is increased with the aging time of the o
... Show MoreThe aim of this research is to assess the validity of Detailed Micro-Modeling (DMM) as a numerical model for masonry analysis. To achieve this aim, a set of load-displacement curves obtained based on both numerical simulation and experimental results of clay masonry prisms loaded by a vertical load. The finite element method was implemented in DMM for analysis of the experimental clay masonry prism. The finite element software ABAQUS with implicit solver was used to model and analyze the clay masonry prism subjected to a vertical load. The load-displacement relationship of numerical model was found in good agreement with those drawn from experimental results. Evidence shows that load-displacement curvefound from the finite element m
... Show MoreThis work presents the modeling of the electrical response of monocrystalline photovoltaic module by using five parameters model based on manufacture data-sheet of a solar module that measured in stander test conditions (STC) at radiation 1000W/m² and cell temperature 25 . The model takes into account the series and parallel (shunt) resistance of the module. This paper considers the details of Matlab modeling of the solar module by a developed Simulink model using the basic equations, the first approach was to estimate the parameters: photocurrent Iph, saturation current Is, shunt resistance Rsh, series resistance Rs, ideality factor A at stander test condition (STC) by an ite
... Show MoreThere is a great operational risk to control the day-to-day management in water treatment plants, so water companies are looking for solutions to predict how the treatment processes may be improved due to the increased pressure to remain competitive. This study focused on the mathematical modeling of water treatment processes with the primary motivation to provide tools that can be used to predict the performance of the treatment to enable better control of uncertainty and risk. This research included choosing the most important variables affecting quality standards using the correlation test. According to this test, it was found that the important parameters of raw water: Total Hardn
Support vector machine (SVM) is a popular supervised learning algorithm based on margin maximization. It has a high training cost and does not scale well to a large number of data points. We propose a multiresolution algorithm MRH-SVM that trains SVM on a hierarchical data aggregation structure, which also serves as a common data input to other learning algorithms. The proposed algorithm learns SVM models using high-level data aggregates and only visits data aggregates at more detailed levels where support vectors reside. In addition to performance improvements, the algorithm has advantages such as the ability to handle data streams and datasets with imbalanced classes. Experimental results show significant performance improvements in compa
... Show MoreReservoir characterization is an important component of hydrocarbon exploration and production, which requires the integration of different disciplines for accurate subsurface modeling. This comprehensive research paper delves into the complex interplay of rock materials, rock formation techniques, and geological modeling techniques for improving reservoir quality. The research plays an important role dominated by petrophysical factors such as porosity, shale volume, water content, and permeability—as important indicators of reservoir properties, fluid behavior, and hydrocarbon potential. It examines various rock cataloging techniques, focusing on rock aggregation techniques and self-organizing maps (SOMs) to identify specific and
... Show MoreDensity Functional Theory (DFT) with B3LYP hybrid exchange-correlation functional and 3-21G basis set and semi-empirical methods (PM3) were used to calculate the energies (total energy, binding energy (Eb), molecular orbital energy (EHOMO-ELUMO), heat of formation (?Hf)) and vibrational spectra for some Tellurium (IV) compounds containing cycloctadienyl group which can use as ligands with some transition metals or essential metals of periodic table at optimized geometrical structures.
This study deals with the estimation of critical load of unidirectional polymer matrix composite plates by using experimental and finite element techniques at different fiber angles and fiber volume fraction of the composite plate.
Buckling analysis illustrated that the critical load decreases in nonlinear relationship with the increase of the fiber angle and that it increases with the increase of the fiber volume fraction.
The results show that the maximum value of the critical load is (629.54 N/m) at (q = 0°) and (Vf = 40 %) for the finite element method, while the minimum val
... Show More