Autism is a lifelong developmental deficit that affects how people perceive the world and interact with each others. An estimated one in more than 100 people has autism. Autism affects almost four times as many boys than girls. The commonly used tools for analyzing the dataset of autism are FMRI, EEG, and more recently "eye tracking". A preliminary study on eye tracking trajectories of patients studied, showed a rudimentary statistical analysis (principal component analysis) provides interesting results on the statistical parameters that are studied such as the time spent in a region of interest. Another study, involving tools from Euclidean geometry and non-Euclidean, the trajectory of eye patients also showed interesting results. In this research, need confirm the results of the preliminary study but also going forward in understanding the processes involved in these experiments. Two tracks are followed, first will concern with the development of classifiers based on statistical data already provided by the system "eye tracking", second will be more focused on finding new descriptors from the eye trajectories. In this paper, study used K-mean with Vector Measure Constructor Method (VMCM). In addition, briefly reflect used other method support vector machine (SVM) technique. The methods are playing important role to classify the people with and without autism specter disorder. The research paper is comparative study between these two methods.
Dust storms are a natural phenomenon occurring in most areas of Iraq. In recent years, the study of this phenomenon has become important because of the danger caused by increasing desertification at the expense of the green cover as well as its impact on human health. In this study is important to devote the remote sensing of dust storms and its detection.Through this research, the dust storms can be detected in semi-arid areas, which are difficult to distinguish between these storms and desert areas. For the distinction between the dust storm pixels in the image with those that do not contain dust storm can be applied the Normalized Difference Dust Index (NDDI) and Brightness Temperature variation (BTV). MODIS sensors that carried
... Show MoreThis study focusses on the effect of using ICA transform on the classification accuracy of satellite images using the maximum likelihood classifier. The study area represents an agricultural area north of the capital Baghdad - Iraq, as it was captured by the Landsat 8 satellite on 12 January 2021, where the bands of the OLI sensor were used. A field visit was made to a variety of classes that represent the landcover of the study area and the geographical location of these classes was recorded. Gaussian, Kurtosis, and LogCosh kernels were used to perform the ICA transform of the OLI Landsat 8 image. Different training sets were made for each of the ICA and Landsat 8 images separately that used in the classification phase, and used to calcula
... Show MoreIn these recent years, the world has witnessed a kind of social exclusion and the inability to communicate directly due to the Corona Virus Covid 19 (COVID-19) pandemic, and the consequent difficulty of communicating with patients with hospitals led to the need to use modern technology to solve and facilitate the problem of people communicating with each other. healthcare has made many remarkable developments through the Internet of things (IOT) and cloud computing to monitor real-time patients' data, which has enabled many patients' lives to be saved. this paper presents the design and implementation of a Private Backend Server Software based on an IoT health monitoring system concerned emergency medical services utilizing biosenso
... Show MoreAccurate emotion categorization is an important and challenging task in computer vision and image processing fields. Facial emotion recognition system implies three important stages: Prep-processing and face area allocation, feature extraction and classification. In this study a new system based on geometric features (distances and angles) set derived from the basic facial components such as eyes, eyebrows and mouth using analytical geometry calculations. For classification stage feed forward neural network classifier is used. For evaluation purpose the Standard database "JAFFE" have been used as test material; it holds face samples for seven basic emotions. The results of conducted tests indicate that the use of suggested distances, angles
... Show MoreThe need for wireless sensing technology has rapidly increased recently, specifically the usage of electromagnetic waves which becoming more required as a source of information. Silicon carbide (SiC) Nano particles has been used in this study, the material under test (MUT) was exposed directly to a microwave field to examine the electromagnetic behavior. The permittivity and permeability were investigated with different filler materials to approach best and optimal electromagnetic absorbing characteristics to assist engineers to monitor structure-based composite for defects evaluation that may occur during operation conditions or through manufacturing process. XRD, FESEM and both complex permittivity and permeability were measured f
... Show MoreAn oil spill is a leakage of pipelines, vessels, oil rigs, or tankers that leads to the release of petroleum products into the marine environment or on land that happened naturally or due to human action, which resulted in severe damages and financial loss. Satellite imagery is one of the powerful tools currently utilized for capturing and getting vital information from the Earth's surface. But the complexity and the vast amount of data make it challenging and time-consuming for humans to process. However, with the advancement of deep learning techniques, the processes are now computerized for finding vital information using real-time satellite images. This paper applied three deep-learning algorithms for satellite image classification
... Show MoreOne of the most significant environmental issues facing the planet today is air pollution. Due to development in industry and population density, air pollution has lately gotten worse. Like many developing nations, Iraq suffers from air pollution, particularly in its urban areas with heavy industry. Our research was carried out in Baghdad's Al-Nahrawan neighbourhood. Recently, ground surveys and remote sensing were used to study the monitoring of air pollution. In order to extract different gaseous and particle data, Earth Data source, Google Earth Engine (GEE), and Geographic Information Systems (GIS) software were all employed. The findings demonstrated that there is a significant positive connection between data collected by ground-ba
... Show MoreIn this paper, we build a fuzzy classification system for classifying the nutritional status of children under 5 years old in Iraq using the Mamdani method based on input variables such as weight and height to determine the nutritional status of the child. Also, Classifying the nutritional status faces a difficult challenge in the medical field due to uncertainty and ambiguity in the variables and attributes that determine the categories of nutritional status for children, which are relied upon in medical diagnosis to determine the types of malnutrition problems and identify the categories or groups suffering from malnutrition to determine the risks faced by each group or category of children. Malnutrition in children is one of the most
... Show MoreThep resent study was conducted for monitoring of the evaporative cooling tower in methanol production plant using digital computer' visuql Basic computer program was used for the monitoring of the performance of the cooling tower. The structure program consists of sub programs and forms to show all the related variabltes such as temperature, flow rate, pressure ...etc, that affect the cooling tower operation and give alarms and important function informition regarding these variables.
Information from 54 Magnetic Resonance Imaging (MRI) brain tumor images (27 benign and 27 malignant) were collected and subjected to multilayer perceptron artificial neural network available on the well know software of IBM SPSS 17 (Statistical Package for the Social Sciences). After many attempts, automatic architecture was decided to be adopted in this research work. Thirteen shape and statistical characteristics of images were considered. The neural network revealed an 89.1 % of correct classification for the training sample and 100 % of correct classification for the test sample. The normalized importance of the considered characteristics showed that kurtosis accounted for 100 % which means that this variable has a substantial effect
... Show More