Autism is a lifelong developmental deficit that affects how people perceive the world and interact with each others. An estimated one in more than 100 people has autism. Autism affects almost four times as many boys than girls. The commonly used tools for analyzing the dataset of autism are FMRI, EEG, and more recently "eye tracking". A preliminary study on eye tracking trajectories of patients studied, showed a rudimentary statistical analysis (principal component analysis) provides interesting results on the statistical parameters that are studied such as the time spent in a region of interest. Another study, involving tools from Euclidean geometry and non-Euclidean, the trajectory of eye patients also showed interesting results. In this research, need confirm the results of the preliminary study but also going forward in understanding the processes involved in these experiments. Two tracks are followed, first will concern with the development of classifiers based on statistical data already provided by the system "eye tracking", second will be more focused on finding new descriptors from the eye trajectories. In this paper, study used K-mean with Vector Measure Constructor Method (VMCM). In addition, briefly reflect used other method support vector machine (SVM) technique. The methods are playing important role to classify the people with and without autism specter disorder. The research paper is comparative study between these two methods.
The object of the presented study was to monitor the changes that had happened in the main features (water, vegetation, and soil) of Al-Hammar Marsh region. To fulfill this goal, different satellite images had been used in different times, MSS 1973, TM 1990, ETM+ 2000, 2002, and MODIS 2009, 2010. A new technique of the unsupervised classification called (Color Extracting Technique) was used to classify the satellite images. MATLAP programming used the technique and separated Al-Hammar Marsh from other water features (rivers, irrigated lands, etc.) when calculated the changes in the water content of the study region. ArcGIS 9.3 (arcMAP, arcToolbox) were used to achieve this work and calculate area of each class.
Karbala province was one of the most important areas in Iraq and considered an
economic resource of vegetation such as trees of fruits, sieve and other vegetation.
This research aimed to utilize change detection for investigating the current
vegetation cover at last three decay. The main objectives of this research are collect
a group of studied area (Karbala province) satellite images in sequence time for
the same area, these image captured by Landsat (TM 1995, ETM+ 2005 and
Landsat 8 OLI (Operational Land Imager) 2015. Preprocessing such as atmosphere
correction and rectification has been done. Mosaic model between the parts of
studied area was performing. Gap filling consider being very important step has
be
In the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial
... Show MoreTwo unsupervised classifiers for optimum multithreshold are presented; fast Otsu and k-means. The unparametric methods produce an efficient procedure to separate the regions (classes) by select optimum levels, either on the gray levels of image histogram (as Otsu classifier), or on the gray levels of image intensities(as k-mean classifier), which are represent threshold values of the classes. In order to compare between the experimental results of these classifiers, the computation time is recorded and the needed iterations for k-means classifier to converge with optimum classes centers. The variation in the recorded computation time for k-means classifier is discussed.
This study investigates the changes occurring in the province of Basra using geospatial methods and analyzes the variations in land surface temperature among the various types of land cover. For the months of July and December in the years 2013 and 2021, Landsat images were used in Landsat 8 OLI/TIRS, and satellite images were processed using ArcGIS 10.8 software. The study's categories for land use and land cover were generated through the application of supervised classification techniques, and the land surface temperature was calculated using data from a satellite sensor's brightness temperature. According to the study's findings, there has been an increase in urban areas (including barren land). From 2013 to 2021, a greater correlati
... Show MoreAndroid operating system, since its first start, is growing very fast and takes a large space in smart devices market. It is built and developed on Linux and designed basically for touch screen devices such as, mobiles, tablets, etc. Mobile devices are markedly complicated and feature-rich; therefore they are prone to reliability of software and performance problems. Because of the small resources, smart devices, such as CPU, RAM, suffer from problems. One of these problems is Software Aging (SA). SA is recognized in long running OSs as a shortage in resources, performance retreating, and finally failure. SA is looked at from two sides, namely the poor response time of application which represents the end user side and the shortage in me
... Show MoreThis study is conducted to carry out a straightforward way appropriate for quality monitoring and stability of arc stud welding process, followed by a number of procedures to control the quality of welded samples, namely torque destructive testing and visual inspection context. Those procedures were being performed to support the monitoring system and verify its validity. Thus, continuous on-line monitoring guarantees earlier discovering stud welding defects and avoiding weld repeatability. On-line welding electronic monitoring system is for non destructive determining if a just completed weld is satisfactory or unsatisfactory, depending on welding current peak value detected by the system. Also, it has been observed significant ha
... Show MoreText categorization refers to the process of grouping text or documents into classes or categories according to their content. Text categorization process consists of three phases which are: preprocessing, feature extraction and classification. In comparison to the English language, just few studies have been done to categorize and classify the Arabic language. For a variety of applications, such as text classification and clustering, Arabic text representation is a difficult task because Arabic language is noted for its richness, diversity, and complicated morphology. This paper presents a comprehensive analysis and a comparison for researchers in the last five years based on the dataset, year, algorithms and the accu
... Show MoreIn this paper, integrated quantum neural network (QNN), which is a class of feedforward
neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that
... Show More