Most drugs undergo some metabolism in the liver before excretion by the kidneys or bile. Thus, it is not surprising that liver injury may be provoked due to its exposure to various drugs and compounds. Drug-induced cholestatic liver injury may occur particularly under conditions of increased drug concentrations, genetic alterations in expression of enzymes or transporters. Additionally, the drug-induced cholestasis can be caused by direct toxic effects of drugs or their metabolites on different hepatic cell types or through an immune-mediated process. Amoxicillin/ clavulanic acid, an antibiotic that is therapeutically utilized for the treatment of a number of bacterial infections. Omega-3 fatty acids are unsaturated fatty acids that have roles in human physiology including αlinolenic acid, eicosapentaenoic acid, and docosahexaenoic acid. This study was designed to examine the impact of coadministration of omega 3 with therapeutic dose of Amoxicillin/ clavulanic acid for 14 days on rats' liver. The animals utilized in this study were allocated into 3 groups (six rats each) as negative control, amoxicillin/ clavulanic acid, amoxicillin/ clavulanic acid and omega 3. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) activities; and serum tumor necrosis factor –alpha (TNF-α), interleukin 10 level were determined. The results showed significant increase (P<0.05) in serum activities of ALT, and ALP; and in serum IL10 compared to the corresponding level in negative control rats. Moreover, a significant decrease in serum activity of ALP, TNF- α, and IL10 levels (P<0.05) were observed in group of rats treated with the combination of omega 3 and amoxicillin/ clavulanic acid compared to amoxicillin/ clavulanic acid-treated rats for 14 days. In conclusion, this study demonstrated that co-administration of omega 3 with amoxicillin/clavulanic acid for 14 days moderately alleviate the injurious effects of the intended antibiotic on rats' liver and bile.
The liver is one of the most prominent glands in the digestive system. It crosses vital organs with multiple functions, including the secretion of enzymes, digestion of fats, and secretion of bile. Through histological studies and those interested in them, the tissue structure of the liver is of interest to researchers, and the four samples of Guinea pig Cavia porcellus were taken in this study to know the histological structure and compare it with rodents in particular. and other animals in general. The results of the liver parenchyma were comparable to those of the studied mammals in periods of hepatocytes, Kupffer cells, and sinusoids surrounding the central vein, blood supply, and bile ducts. He did not record differences, eve
... Show MoreThe liver is one of the most prominent glands in the digestive system. It crosses vital organs with multiple functions, including the secretion of enzymes, digestion of fats, and secretion of bile. Through histological studies and those interested in them, the tissue structure of the liver is of interest to researchers, and the four samples of Guinea pig Cavia porcellus were taken in this study to know the histological structure and compare it with rodents in particular. and other animals in general. The results of the liver parenchyma were comparable to those of the studied mammals in periods of hepatocytes, Kupffer cells, and sinusoids surrounding the central vein, blood supply, and bile ducts. He did not record differences, eve
... Show MoreReacts compound C6H5PO2Cl2 with Secretary secondary R2NH at room temperature by Mulet 2:1 and using chloroform as a solvent in dry conditions to form composite 2HCl and the interaction of compound solution of sodium hydroxide and potassium by Mulet 3:1 salt was prepared
This search include the synthesis of some new 1,3-oxazepine derivatives have been prepared, starting from reaction of L-ascorbic acid with dry acetone in presence of dry hydrogen chloride afforded the acetal (I). Treatment of the latter with p-nitrobenzoyl chloride in pyridine yielded the ester (II) which was dissolved in (65%) acetic acid in absolute ethanol yielded the glycol (III). The reaction of the glycol (III) with sodium periodate in distilled water at room temperature produced the aldehyde (IV). The compound (V) [4-(1,3-dioxoisoindolin-2-yl)benzoic acid] was synthesized by reaction p-aminobenzoic acid and phthalic anhydride in presence of (gla. CH3COOH). Reaction of compound (V) with thionyl chloride produced [4-(1,3-dioxoisoindoli
... Show MoreA new ligand [N-(3-acetylphenylcarbamothioyl)-4-chlorobenzamide] (CAD) was synthesized by reaction of 4-Chlorobenzoyl isothiocyanate with 3-amino acetophenone, The ligand was characterized by elemental micro analysis C.H.N. S., FT-IR, UV-Vis and 1H,13C- NMR spectra, some transition metals complexes of this ligand were prepared and characterized by FT-IR, UV-Vis spectra, conductivity measurements, magnetic susceptibility and atomic absorption, From obtained results the molecular formula of all prepared complexes were [M(CAD)2(H2O)2]Cl2 (M+2 =Mn, Co, Ni, Cu, Zn, Cd and Hg),the proposed geometrical structure for all complexes were octahedral.
A new ligand [N-(3-acetylphenylcarbamothioyl)-4-chlorobenzamide] (CAD) was synthesized by reaction of 4-Chlorobenzoyl isothiocyanate with 3-amino acetophenone, The ligand was characterized by elemental micro analysis C.H.N. S., FT-IR, UV-Vis and 1H,13C- NMR spectra, some transition metals complexes of this ligand were prepared and characterized by FT-IR, UV-Vis spectra, conductivity measurements, magnetic susceptibility and atomic absorption, From obtained results the molecular formula of all prepared complexes were [M(CAD)2(H2O)2]Cl2 (M+2 =Mn, Co, Ni, Cu, Zn, Cd and Hg),the proposed geometrical structure for all complexes were octahedral
Esterification considers the most important reaction in biodiesel production. In this study, oleic acid was used as a suggested feedstock in order to study and simulate production of biodiesel. The batch esterification reaction of oleic acid was carried out at various operating conditions; temperature from 40 to 70 °C, ethanol to oleic acid molar ratio from 3/1 and 6/1 and a reaction time up to 180 min.
The catalyst used was prepared NaY zeolite, which is added to the reaction mixture as 2, 5 and 10 wt.% of oleic acid.
The results show that the optimum conditions, gives 0.81 conversion of oleic acid, were 6/1 molar ratio of ethanol/oleic acid, 5 wt.% NaY relative to initial oleic acid, 70°C and 60 minutes. The activation energy o
