Preferred Language
Articles
/
yRcvfY8BVTCNdQwCQXns
تأثير منهج تعليمي قائم على أنموذج التعلم البنائي في بعض المهارات الاساسية الهجومية بكرة السلة للطالبات
...Show More Authors

أن عملية التعلم لازالت تسير بنفس الاسلوب المتبع الذي لا يعتبر المتعلمة محور اساسي في عملية التعلم مما سبب ظهور الملل وانخفاض الرغبة لدى المتعلمات للتعلم لغياب الحافز, ولكون المهارات الاساسية بكرة السلة كالمناولة الصدرية والطبطبة بتغير الاتجاه والتصويب السلمي تعد من المهارات المهمة في اللعبة تم اجراء هذه الدراسة الذي يهدف الى اعداد  منهج تعليمي قائم على انموذج التعلم البنائي والتعرف على تأثيره في بعض المهارات الاساسية الهجومية, وكان اهم فروض البحث الى وجود فرق معنوي دال احصائيا بين نتائج الاختبارات القبلية والبعدية لكلا المجموعتين الضابطة والتجريبية , تم استخدام المنهج التجريبي بتصميم المجموعتين المتساويتين بالعدد , وتمثلت عينة البحث بمجموعة من طالبات كلية التربية البدنية وعلوم الرياضة للبنات – جامعة بغداد , وتم اتباع السياق العلمي في تحقيق اجراءات البحث الميدانية وتحديد الوسائل الاحصائية المناسبة , وبعد معالجة النتائج توصلت الباحثتان الى استنتاجات اهمها التأثير الايجابي لنموذج التعلم البنائي  في تعلم المهارات الاساسية الهجومية  بكرة السلة للطالبات , وكانت اهم التوصيات الى الأخذ بنتائج هذه الدراسة والى استخدام هذا النموذج في عملية التعلم للمهارات المختارة

Crossref
Publication Date
Thu Feb 16 2023
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Knowledge, Attitudes, Practices, and Online Distance Learning Experience of Malaysian University Students towards COVID-19: A Cross Sectional Study(Conference Paper )#
...Show More Authors

Some new norms need to be adapted due to COVID-19 pandemic period where people need to wear masks, wash their hands frequently, maintain social distancing, and avoid going out unless necessary. Therefore, educational institutions were closed to minimize the spread of COVID-19. As a result of this, online education was adapted to substitute face-to-face learning. Therefore, this study aimed to assess the Malaysian university students’ adaptation to the new norms, knowledge and practices toward COVID-19, besides, their attitudes toward online learning. A convenient sampling technique was used to recruit 500 Malaysian university students from January to February 2021 through social media. For data collection, all students

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Tue Aug 01 2023
Journal Name
Baghdad Science Journal
A New Model Design for Combating COVID -19 Pandemic Based on SVM and CNN Approaches
...Show More Authors

       In the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from      Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (3)
Scopus Crossref
Publication Date
Fri Sep 27 2024
Journal Name
Journal Of Applied Mathematics And Computational Mechanics
Fruit classification by assessing slice hardness based on RGB imaging. Case study: apple slices
...Show More Authors

Correct grading of apple slices can help ensure quality and improve the marketability of the final product, which can impact the overall development of the apple slice industry post-harvest. The study intends to employ the convolutional neural network (CNN) architectures of ResNet-18 and DenseNet-201 and classical machine learning (ML) classifiers such as Wide Neural Networks (WNN), Naïve Bayes (NB), and two kernels of support vector machines (SVM) to classify apple slices into different hardness classes based on their RGB values. Our research data showed that the DenseNet-201 features classified by the SVM-Cubic kernel had the highest accuracy and lowest standard deviation (SD) among all the methods we tested, at 89.51 %  1.66 %. This

... Show More
View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Turkish Journal Of Physiotherapy And Rehabilitation
classification coco dataset using machine learning algorithms
...Show More Authors

In this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification metho

... Show More
Publication Date
Wed Jul 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A Scoping Review of Machine Learning Techniques and Their Utilisation in Predicting Heart Diseases
...Show More Authors

Heart diseases are diverse, common, and dangerous diseases that affect the heart's function. They appear as a result of genetic factors or unhealthy practices. Furthermore, they are the leading cause of mortalities in the world. Cardiovascular diseases seriously concern the health and activity of the heart by narrowing the arteries and reducing the amount of blood received by the heart, which leads to high blood pressure and high cholesterol. In addition, healthcare workers and physicians need intelligent technologies that help them analyze and predict based on patients’ data for early detection of heart diseases to find the appropriate treatment for them because these diseases appear on the patient without pain or noticeable symptoms,

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Baghdad Science Journal
Editorial: Current advances in anti-infective strategies
...Show More Authors

Infectious diseases pose a global challenge, necessitating an exploration of novel methodologies for diagnostics and treatments. Since the onset of the most recent pandemic, COVID-19, which was initially identified as a worldwide health crisis, numerous countries experienced profound disruptions in their healthcare systems. To combat the spread of the COVID-19 pandemic, governments across the globe have mobilized significant efforts and resources to develop treatments and vaccines. Researchers have put forth a multitude of approaches for COVID-19 detection, treatment protocols, and vaccine development, including groundbreaking mRNA technology, among others.

This matter represents not only a scientific endeavor but also an essenti

... Show More
View Publication Preview PDF
Publication Date
Mon Feb 12 2024
Journal Name
Mustansiriyah Journal Of Sports Science
The impact of the use of numbered head and brainstorming strategies to learn handspring on the Vault table in artistic gymnastics for Men
...Show More Authors

The aim of the study was to identify the use of the strategies of numbered heads and brainstorming in learning handspring on the Vault table in artistic gymnastics for Men for the third grade students in the collage of Physical Education and Sport Sciences, as well as to identify the best group among the three research groups (number of heads numbered,, brainstorming strategies And the traditional style group) to learn the skill under study. Using the experimental method, the research subject included the third grade students in the collage of Physical Education and Sports Sciences / University of Baghdad, and randomly by lot, 12 students were selected for each of the three research groups. The study consisted of the arithmetic mean

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jul 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Applying Ensemble Classifier, K-Nearest Neighbor and Decision Tree for Predicting Oral Reading Rate Levels
...Show More Authors

For many years, reading rate as word correct per minute (WCPM) has been investigated by many researchers as an indicator of learners’ level of oral reading speed, accuracy, and comprehension. The aim of the study is to predict the levels of WCPM using three machine learning algorithms which are Ensemble Classifier (EC), Decision Tree (DT), and K- Nearest Neighbor (KNN). The data of this study were collected from 100 Kurdish EFL students in the 2nd-year, English language department, at the University of Duhok in 2021. The outcomes showed that the ensemble classifier (EC) obtained the highest accuracy of testing results with a value of 94%. Also, EC recorded the highest precision, recall, and F1 scores with values of 0.92 for

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
Performance Evaluation of Intrusion Detection System using Selected Features and Machine Learning Classifiers
...Show More Authors

Some of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems.  Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic.  Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance.  In this study, two different sets of select

... Show More
View Publication Preview PDF
Scopus (20)
Crossref (17)
Scopus Clarivate Crossref
Publication Date
Mon Dec 05 2022
Journal Name
Baghdad Science Journal
MSRD-Unet: Multiscale Residual Dilated U-Net for Medical Image Segmentation
...Show More Authors

Semantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (4)
Scopus Crossref