An efficient networks’ energy consumption and Quality of Services (QoS) are considered the most important issues, to evaluate the route quality of the designed routing protocol in Wireless Sensor Networks (WSNs). This study is presented an evaluation performance technique to evaluate two routing protocols: Secure for Mobile Sink Node location using Dynamic Routing Protocol (SMSNDRP) and routing protocol that used K-means algorithm to form Data Gathered Path (KM-DGP), on small and large network with Group of Mobile Sinks (GMSs). The propose technique is based on QoS and sensor nodes’ energy consumption parameters to assess route quality and networks’ energy usage. The evaluation technique is conducted on two routing protocols in two phases: The first phase is used to evaluate the route quality and networks’ energy consumption on small WSN with one mobile Sink Node (SN) and GMSs. The second phase, is used to evaluate the route quality and networks’ energy consumption on large network (four WSNs) with GMSs. The two phases are implementated by creating five sceneries via using NS2.3 simulator software. The implementation results of the proposed performance evaluation technique have demonstrated that SMSNDRP gives better networks’ energy consumption on small single network in comparison with KM-DGP. Also, it gives high quality route in large network that used four mobile SN, in contrast to KM-DGP that used sixteen mobile SNs. While in large network, it found that KM-DGP with sixteen mobile SNs gives better networks’ energy consumption in comparison with SMSNDRP with four mobile SNs.
Abstract
Binary logistic regression model used in data classification and it is the strongest most flexible tool in study cases variable response binary when compared to linear regression. In this research, some classic methods were used to estimate parameters binary logistic regression model, included the maximum likelihood method, minimum chi-square method, weighted least squares, with bayes estimation , to choose the best method of estimation by default values to estimate parameters according two different models of general linear regression models ,and different s
... Show MoreAbstract: Lymphoproliferative Disorders (LPDs) are a group of neoplasms affecting various cells within lymphoid system. Each type has different treatment a..70619
In this article, the solvability of some proposal types of the multi-fractional integro-partial differential system has been discussed in details by using the concept of abstract Cauchy problem and certain semigroup operators and some necessary and sufficient conditions.
Background: Saliva is one of the most important etiological host factors in relation to dental caries. It affects the carious process by its organic and inorganic constituents; in addition to its physiological functions as (flow rate, pH and buffer capacity). The aims of this study were to determine the concentrations of major elements (calcium and phosphorus) and trace elements (ferrous iron, nickel, chromium and aluminum) in saliva among a group of adolescent girls, and to explore the relation of these elements, flow rate and pH with dental caries. Material & Methods: The study group consisted of 25 girls with an age of 13-15 years old. Dental caries was diagnosed by both clinical and radiographical examinations following the criteria of
... Show MoreAbstract
The grey system model GM(1,1) is the model of the prediction of the time series and the basis of the grey theory. This research presents the methods for estimating parameters of the grey model GM(1,1) is the accumulative method (ACC), the exponential method (EXP), modified exponential method (Mod EXP) and the Particle Swarm Optimization method (PSO). These methods were compared based on the Mean square error (MSE) and the Mean Absolute percentage error (MAPE) as a basis comparator and the simulation method was adopted for the best of the four methods, The best method was obtained and then applied to real data. This data represents the consumption rate of two types of oils a he
... Show MoreThe deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv
... Show MoreABSTRACT Background: This study aimed to study the effect of some acidic drinks (Vinegars and fresh Orange juice) and energy drinks (Red bull) on surface roughness of three types of bulkfill composite materials: Filtek posterior bulkfill (3M), Sonicfill (Kerr) and Filtek p60 (3M). Materials and Methods: Total number of 120 samples are prepared by using a mold of (12mm diameter and 3mm height), which were divided into three groups forty samples for each group: Group A: Filtek bulkfill posterior composite (3M), Group B: Sonicfill composite (Kerr), Group C: Filtek P60 (3 M) which then divided into four sub- groups (n=10) (1) samples were kept in distilled water as a control group (2) samples were immersed in Redbull (3) samples were immersed
... Show MoreNowadays, people's expression on the Internet is no longer limited to text, especially with the rise of the short video boom, leading to the emergence of a large number of modal data such as text, pictures, audio, and video. Compared to single mode data ,the multi-modal data always contains massive information. The mining process of multi-modal information can help computers to better understand human emotional characteristics. However, because the multi-modal data show obvious dynamic time series features, it is necessary to solve the dynamic correlation problem within a single mode and between different modes in the same application scene during the fusion process. To solve this problem, in this paper, a feature extraction framework of
... Show More