The important aspect of this unconventional approach is that eco-friendly, commercially available and straight forward method was used to prepared Silver Nanoparticles by using AgNO3 and curcumin solution as agent factor. The (TEM), (XRD), and (FTIR) was used to characterise these silver nanoparticles (AgNPs). Two types of bacterial isolates were used to indicate the antibacterial activity silver nanoparticles which prepared by curcumin solution, Gram negative like (Escherichia Coli E. Coli), & Gram positive (Stapha Urous). The results exhibit that silver nanoparticles synthesized by curcumin solution has effective antibacterial activities.
In this work, copper substituted cobalt ferrite nanoparticles with
chemical formula Co1-xCuxFe2O4 (x=0, 0.3, and 0.7), has been
synthesized via hydrothermal preparation method. The structure of
the prepared materials was characterized by X-ray diffraction (XRD).
The (XRD) patterns showed single phase spinel ferrite structure.
Average crystallite size (D), lattice constant (a), and crystal density
(dx) have been calculated from the most intense peak (311).
Comparative standardization also performed using smaller average
particle size (D) on the XRD patterns of as-prepared ferrite samples
in order to select most convenient hydrothermal synthesis conditions
to get ferrite materials with smallest average particl
In this research, silver nanoparticles (AgNPs) were manufactured using aqueous extract of mushroom Pleurotus ostreatus. Anticancer potential of AgNPs was investigated versus human breast cancer cell line (MCF-7). Cytotoxic response was assessed by MTT assay. AgNPs showed inhibition effect at the following concentrations 12.5, 25, 50, 100 and 200 µg/ml versus MCF-7 cell line, and all treatments had a positive result. The MCF-7 cells were inhibited up to 85.14 % at the concentration 200 μg/ml of AgNPs which reduced cells viability to 14.86%, while 12.5 μg/ml of AgNPs caused 24.23% cells inhibition with reduction of cells viability to 75.77%.
In this work ,the modified williamos-Hall method was used to analysis the x-ray diffraction lines for powder of magnesium oxide nanoparticles (Mgo) .and for diffraction lines (111),(200),(220),(311) and (222).where by used special programs such as origin pro Lab and Get Data Graph ,to calculate the Full width at half maximum (FWHM) and integral breadth (B) to calculate the area under the curve for each of the lines of diffraction .After that , by using modified Williamson –Hall equations to determin the values of crystallite size (D),lattice strain (ε),stress( σ ) and energy (U) , where was the results are , D=17.639 nm ,ε =0.002205 , σ=0.517 and U=0.000678 respectively. And then using the scherrer method can by calculated the crystal
... Show MoreThis study uses an environmentally friendly and low-cost synthesis method to manufacture zinc oxide nanoparticles (ZnO NPs) by using zinc sulfate. Eucalyptus leaf extract is an effective chelating and capping agent for synthesizing ZnO NPs. The structure, morphology, thermal behavior, chemical composition, and optical properties of ZnO nanoparticles were studied utilizing FT-IR, FE-SEM, EDAX, AFM, and Zeta potential analysis. The FE-SEM pictures confirmed that the ZnO NPs with a size range of (22-37) nm were crystalline and spherical. Two methods were used to prepare ZnO NPs. The first method involved calcining the resulting ZnO NPs, while the second method did not. The prepared ZnO NPs were used as adsorbents for removing acid black 210
... Show MoreIn this study, gold nanoparticles were synthesized in a single step biosynthetic method using aqueous leaves extract of thymus vulgaris L. It acts as a reducing and capping agent. The characterizations of nanoparticles were carried out using UV-Visible spectra, X-ray diffraction (XRD) and FTIR. The surface plasmon resonance of the as-prepared gold nanoparticles (GNPs) showed the surface plasmon resonance centered at 550[Formula: see text]nm. The XRD pattern showed that the strong four intense peaks indicated the crystalline nature and the face centered cubic structure of the gold nanoparticles. The average crystallite size of the AuNPs was 14.93[Formula: see text]nm. Field emission scanning electron microscope (FESEM) was used to s
... Show MoreA series of heterogeneous basic catalysts of CaO, MgO and CaMgO2 at different calcination temperature were synthesized via solution combustion method. Different characterization techniques have been carried out to investigate the structure of the produced catalysts i.e. X-ray diffraction (XRD), particle size analyzer, morphology by atomic force microscope (AFM) and reflection using UV-VIS diffuse reflectance spectra. The particles size analyzer revealed that the mixed oxide catalysts calcined at different calcination temperature possess smaller nano size particles compared to pure CaO. Moreover, the energy band gap was calculated based on the results of diffuse reflectance spectra. The energy band gap was redu
... Show Moreتم في هذه الدراسة ، تزيين رقائق أكسيد الجرافين (GO) بجسيمات كوبلتيت النيكل النانوية NiCo2O4(NC) عن طريق الترسيب في الموقع ، وتم استخدام المتراكب المحضر (NC: GO) كسطح ماز لإزالة صبغة الميثيل الخضراء ( MG) من المحاليل المائية. تم التحقق من التغطية الناجحة لأوكسيد الجرافين بجزيئات كوبلتيت النيكل النانوية (NC) باستخدام دراسات FT-IR وحيود الأشعة السينية (XRD). كانت أحجام الجسيم
... Show MoreThe addition of new reactive sites on the surface area of the inert sand, which are represented by layered double hydroxide nanoparticles, is the primary goal of this work, which aims to transform the sand into a reactive material. Cetyltrimethylammonium bromide (CTAB) surfactant is used in the reaction of calcium extracted from solid waste-chicken eggshells with aluminum prepared from the cheapest coagulant-alum. By separating amoxicillin from wastewater, the performance of coated sand named as "sand coated with (Ca/Al-CTAB)-LDH" was evaluated. Measurements demonstrated that pH of 12 from 8, 9, 10, 11, and 12, CTAB dosage of 0.05 g from 0, 0.03, 0.05, and 0.1 g, ratio of Ca/Al of 2 from 1, 2, 3, and 4, and mass of sand of 1 g/50 mL from
... Show MoreCopper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the
... Show MoreCopper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the
... Show More