Academia Open Vol 8 No 2 (2023): December DOI: 10.21070/acopen.8.2023.8087 . Article type: (Medicine)Impact of COVID-19 on Dental Students' Psychological Health Maryam Hameed Alwan, [email protected], (1) Department of Oral Diagnosis, College of Dentistry, Baghdad University, Iraq, Iraq (1) Corresponding author Abstract This study investigates the psychological impact of the COVID-19 pandemic on dental students at Baghdad University College of Dentistry. Conducted between December 2021 and January 2022, this cross-sectional survey aligns with ethical guidelines and the Helsinki Declaration. The study utilized Cochran's equation to determine a sample size of at least 400, ensuring a 95% confidence level with a 5% margin of error. The Perceived Stress Scale (PSS) and the Covid Student Stress Questionnaire (CSSQ) were employed as primary tools, assessing general and COVID-19-related stress, respectively. A total of 411 students participated, with 67.50% experiencing moderate to severe stress (PSS <14) and 58.8% reporting average levels of COVID-related stress (CSSQ <7). Notably, there was a significant positive correlation between the PSS and CSSQ scores (P = 0.008). The analysis, conducted using IBM SPSS Statistics software V26, included descriptive statistics, Cronbach's alpha for reliability, and Pearson Correlation for assessing correlations. The findings indicate that a substantial proportion of dental students experienced heightened stress levels, potentially leading to mental health disorders like cognitive impairment. These results emphasize the need for universities to enhance psychological support and for government bodies to implement comprehensive health education and awareness programs. This study not only sheds light on the immediate psychological effects of the pandemic on dental students but also serves as a foundational reference for future interventions aimed at reducing stress levels in this demographic
The economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The s
... Show MoreWeb testing is very important method for users and developers because it gives the ability to detect errors in applications and check their quality to perform services to users performance abilities, user interface, security and other different types of web testing that may occur in web application. This paper focuses on a major branch of the performance testing, which is called the load testing. Load testing depends on an important elements called request time and response time. From these elements, it can be decided if the performance time of a web application is good or not. In the experimental results, the load testing applied on the website (http://ihcoedu.uobaghdad.edu.iq) the main home page and all the science departments pages. In t
... Show MoreThe aim of the current study is to in evaluate the role of SOD activity in the previously reported oxidative stress in our laboratory(1), in the patients with different brain tumors. SOD activity was assayed according to riboflavin/NBT method and its specific activity was calculated in patients with benign and malignant brain tumors and control. Moreover the specific activity was compared in these samples according to gender and the occurrence of disease.Non significant elevation (P > 0.05) in SOD specific activity was observed in tissue of malignant tumors in comparison to that of in benign brain tumors. While a highly significant decrease (P < 0.001) of the specific activity was found in sera of malignant patients group in comparison to t
... Show MoreThe aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).
This study employs wavelet transforms to address the issue of boundary effects. Additionally, it utilizes probit transform techniques, which are based on probit functions, to estimate the copula density function. This estimation is dependent on the empirical distribution function of the variables. The density is estimated within a transformed domain. Recent research indicates that the early implementations of this strategy may have been more efficient. Nevertheless, in this work, we implemented two novel methodologies utilizing probit transform and wavelet transform. We then proceeded to evaluate and contrast these methodologies using three specific criteria: root mean square error (RMSE), Akaike information criterion (AIC), and log
... Show MoreThe main purpose of this work is to introduce some types of fuzzy convergence sequences of operators defined on a standard fuzzy normed space (SFN-spaces) and investigate some properties and relationships between these concepts. Firstly, the definition of weak fuzzy convergence sequence in terms of fuzzy bounded linear functional is given. Then the notions of weakly and strongly fuzzy convergence sequences of operators are introduced and essential theorems related to these concepts are proved. In particular, if ( ) is a strongly fuzzy convergent sequence with a limit where linear operator from complete standard fuzzy normed space into a standard fuzzy normed space then belongs to the set of all fuzzy bounded linear operators
Digital tampering identification, which detects picture modification, is a significant area of image analysis studies. This area has grown with time with exceptional precision employing machine learning and deep learning-based strategies during the last five years. Synthesis and reinforcement-based learning techniques must now evolve to keep with the research. However, before doing any experimentation, a scientist must first comprehend the current state of the art in that domain. Diverse paths, associated outcomes, and analysis lay the groundwork for successful experimentation and superior results. Before starting with experiments, universal image forensics approaches must be thoroughly researched. As a result, this review of variou
... Show More The current paper studied the concept of right n-derivation satisfying certified conditions on semigroup ideals of near-rings and some related properties. Interesting results have been reached, the most prominent of which are the following: Let M be a 3-prime left near-ring and A_1,A_2,…,A_n are nonzero semigroup ideals of M, if d is a right n-derivation of M satisfies on of the following conditions,
d(u_1,u_2,…,(u_j,v_j ),…,u_n )=0 ∀ 〖 u〗_1 〖ϵA〗_1 ,u_2 〖ϵA〗_2,…,u_j,v_j ϵ A_j,…,〖u_n ϵA〗_u;
d((u_1,v_1 ),(u_2,v_2 ),…,(u_j,v_j ),…,(u_n,v_n ))=0 ∀u_1,v_1 〖ϵA〗_1,u_2,v_2 〖ϵA〗_2,…,u_j,v_j ϵ A_j,…,〖u_n,v_n ϵA〗_u ;
d((u_1,v_1 ),(u_2,v_2 ),…,(u_j,v_j ),…,(u_n,v_n ))=(u_
Classification of imbalanced data is an important issue. Many algorithms have been developed for classification, such as Back Propagation (BP) neural networks, decision tree, Bayesian networks etc., and have been used repeatedly in many fields. These algorithms speak of the problem of imbalanced data, where there are situations that belong to more classes than others. Imbalanced data result in poor performance and bias to a class without other classes. In this paper, we proposed three techniques based on the Over-Sampling (O.S.) technique for processing imbalanced dataset and redistributing it and converting it into balanced dataset. These techniques are (Improved Synthetic Minority Over-Sampling Technique (Improved SMOTE), Border
... Show More