The physical sports sector in Iraq suffers from the problem of achieving sports achievements in individual and team games in various Asian and international competitions, for many reasons, including the lack of exploitation of modern, accurate and flexible technologies and means, especially in the field of information technology, especially the technology of artificial neural networks. The main goal of this study is to build an intelligent mathematical model to predict sport achievement in pole vaulting for men, the methodology of the research included the use of five variables as inputs to the neural network, which are Avarage of Speed (m/sec in Before distance 05 meters latest and Distance 05 meters latest, The maximum speed achieved in the last 5 meters from the total approach distance of 30 meters, The ratio of the conversion coefficient of horizontal velocity to vertical velocity, The ratio of the conversion coefficient of horizontal velocity to vertical velocity, The height of the fist is over the full length of the pole's stick) and these are considered independent variables, while the dependent variable was the prediction of achievement (Final height achieved by the jumper) as an output. The neural network architecture was represented by three layers, the first layer is the input layer with the five variables, and one layer is hidden and contains one node, while the last layer is the output layer that represents the outcome of the sport achievement prediction of male weight jumping. The momentum term and learning rate were chosen by 0.95 and 0.4 respectively, and the transfer function in the hidden layer was the sigmoid function and in the last layer was the sigmoid function, the historical data used in this model represent the Olympic achievements of a number of world champions, the results of this study were that the artificial neural network has the ability to prediction of sport achievement for determine the height of the jump of the pole player with a degree of accuracy of 90.10%, correlation coefficient and 95.60%.
The process of soil classification in Iraq for industrial purposes is important topics that need to be extensive and specialized studies. In order for the advancement of reality service and industrial in our dear country, that a lot of scientific research touched upon the soil classification in the agricultural, commercial and other fields. No source and research can be found that touched upon the classification of land for industrial purposes directly. In this research specialized programs have been used such as geographic information system software The geographical information system permits the study of local distribution of phenomena, activities and the aims that can be determined in the loca
The aim of this study is to identify the effect of particle size and to increase the concentration of Iraqi bentonite on rheological properties in order to evaluate its performance and to know if it can be used as drilling fluid without additives or not. In this study, Iraqi bentonite was carried out by mineral composition (XRD), chemical composition (XRF) and Particle size distribution (PSD), and its rheological properties were measured at different particle size and concentration. The results showed that when the particle size of Iraqi bentonite decreased, and the rheological properties were increased with increased concentration of Iraqi bentonite. Also, Iraqi bentonite was unable to use as drilling fluid without certain additives.
... Show MoreData of multispectral satellite image (Landsat- 5 and Landsat-7) was used to monitoring the case of study area in the agricultural (extension and plant density), using ArcGIS program by the method of analysis (Soil adjusted vegetative Index). The data covers the selected area at west of Baghdad Government with a part of the Anbar and Karbala Government. Satellite image taken during the years 1990, 2001 and 2007. The scene of Satellite Image is consists of seven of spectral band for each satellite, Landsat-5(TM) thematic mapper for the year 1990, as well as satellite Landsat-7 (ETM+) Enhancement thematic mapper for the year 2001 and 2007. The results showed that in the period from 1990 to 2001 decreased land area exposed (bare) and increased
... Show MoreThe aim of the research is to know the effect of a training program based on interactive teaching strategies on achievement and creative problem solving among fourth-grade students in chemistry of the directorate of education Rusafa first, the sample was divided into two groups, one experimental and numbering (29) students and the other control group numbering (30) students. The experimental group underwent the training program in the first semester of the year (2021-2022) and the control one studied according to the usual method. Two tools were built, the first being an academic achievement test consisting of (40) multiple-choice items, and the second a test of creative problem-solving skills in a chemistry subject and consisting o
... Show MoreThe research aims to find the impact of a proposed strategy according to the Luria model on realistic thinking among fifth-class scientific students and their achievement in mathematics. To achieve it, the experimental research method and the quasi-experimental design were used for two equal groups, one of them is a control group taught in traditional way and the other is an experimental one taught according to strategy based on Luria model. The research community represents the students of the fifth scientific class from the General Directorate of Education of Karkh First. The research sample (40) students were deliberately chosen and distributed equally between the two groups after making sure that they were equals in their previo
... Show MoreIn this article, the lattice Boltzmann method with two relaxation time (TRT) for the D2Q9 model is used to investigate numerical results for 2D flow. The problem is performed to show the dissipation of the kinetic energy rate and its relationship with the enstrophy growth for 2D dipole wall collision. The investigation is carried out for normal collision and oblique incidents at an angle of . We prove the accuracy of moment -based boundary conditions with slip and Navier-Maxwell slip conditions to simulate this flow. These conditions are under the effect of Burnett-order stress conditions that are consistent with the discrete Boltzmann equation. Stable results are found by using this kind of boundary condition where d
... Show MoreThe Neutron Fermi Age, t, and the neutron slowing down density, q (r, t) , have been measured for some materials such as Graphite and Iron by using gamma spectrometry system UCS-30 with NaI (Tl) detector. This technique was applied for Graphite and Iron materials by using Indium foils covered by Cadmium and the measurements done at the Indium resonance of 1.46 eV. These materials are exposed to a plane 241Am/Be neutron source with recent activity 38 mCi. The measurements of the Fermi Age were found to be t = 297 ± 21 cm2 for Graphite, t = 400 ± 28 cm2 for Iron. Neutron slowing down density was also calculated depending on the recent experimental t value and distance.
Is in this research review of the way minimum absolute deviations values based on linear programming method to estimate the parameters of simple linear regression model and give an overview of this model. We were modeling method deviations of the absolute values proposed using a scale of dispersion and composition of a simple linear regression model based on the proposed measure. Object of the work is to find the capabilities of not affected by abnormal values by using numerical method and at the lowest possible recurrence.
The accuracy of the Moment Method for imposing no-slip boundary conditions in the lattice Boltzmann algorithm is investigated numerically using lid-driven cavity flow. Boundary conditions are imposed directly upon the hydrodynamic moments of the lattice Boltzmann equations, rather than the distribution functions, to ensure the constraints are satisfied precisely at grid points. Both single and multiple relaxation time models are applied. The results are in excellent agreement with data obtained from state-of-the-art numerical methods and are shown to converge with second order accuracy in grid spacing.