The physical sports sector in Iraq suffers from the problem of achieving sports achievements in individual and team games in various Asian and international competitions, for many reasons, including the lack of exploitation of modern, accurate and flexible technologies and means, especially in the field of information technology, especially the technology of artificial neural networks. The main goal of this study is to build an intelligent mathematical model to predict sport achievement in pole vaulting for men, the methodology of the research included the use of five variables as inputs to the neural network, which are Avarage of Speed (m/sec in Before distance 05 meters latest and Distance 05 meters latest, The maximum speed achieved in the last 5 meters from the total approach distance of 30 meters, The ratio of the conversion coefficient of horizontal velocity to vertical velocity, The ratio of the conversion coefficient of horizontal velocity to vertical velocity, The height of the fist is over the full length of the pole's stick) and these are considered independent variables, while the dependent variable was the prediction of achievement (Final height achieved by the jumper) as an output. The neural network architecture was represented by three layers, the first layer is the input layer with the five variables, and one layer is hidden and contains one node, while the last layer is the output layer that represents the outcome of the sport achievement prediction of male weight jumping. The momentum term and learning rate were chosen by 0.95 and 0.4 respectively, and the transfer function in the hidden layer was the sigmoid function and in the last layer was the sigmoid function, the historical data used in this model represent the Olympic achievements of a number of world champions, the results of this study were that the artificial neural network has the ability to prediction of sport achievement for determine the height of the jump of the pole player with a degree of accuracy of 90.10%, correlation coefficient and 95.60%.
This study focuses on how tax administrations in Iraq use Artificial Intelligence (AI) techniques to monitor tax evasion for individuals and companies to achieve Tax Compliance (TC). AI was measured through four dimensions: Advanced Data Analytics Techniques (ADAT), Explainable AI (EAI), Machine learning (ML), and Robotic Process Automation (RPA). At the same time, TC was measured through registration, accounting, and tax payment stages. We relied on the questionnaire form to measure the variables. A sample of employees in the General Tax Authority in Iraq was selected, and a questionnaire was distributed to 132 people. The results indicated that the dimensions of AI affect achieving TC at all stages. This study provides evidence of using A
... Show MoreWith the development of modern mass media and the prevalence of use continues to both researchers and practitioners their efforts to understand how the media affect Hzha on both the individual and the institutions, society and culture as a whole, which means that the need to develop models and theories explain and predict the effects of the use of such means, therefore, the study of modern technologies of communication and information as an area of research has become mature to establish the intellectual base cohesive, but they are not mature enough, which calls for more research developments therefore become social networking sites online, (Facebook, and YouTube, and straining) known today as the new social media, which is witness
... Show MoreThis study aims to demonstrate the role of artificial intelligence and metaverse techniques, mainly logistical Regression, in reducing earnings management in Iraqi private banks. Synthetic intelligence approaches have shown the capability to detect irregularities in financial statements and mitigate the practice of earnings management. In contrast, many privately owned banks in Iraq historically relied on manual processes involving pen and paper for recording and posting financial information in their accounting records. However, the banking sector in Iraq has undergone technological advancements, leading to the Automation of most banking operations. Conventional audit techniques have become outdated due to factors such as the accuracy of d
... Show MoreTo find out a simple and efficient equation to estimate maize ear grain weight on farm (in situ), twenty three maize crosses along with two synthetics were grown in the field. On the experimental farm of the Dept. of Field Crop Sci., College of Agric., Univ. of Baghdad, seeds of twenty five maize genotypes were grown in the fall season of 2013 with three replicates. At dough stage of the kernels, five naked ears of each experimental units were measured for length and maximum diameter. This will sum up 125 ears of the trial. The volumes of ears were calculated as cylinder (length× r2× 3.1416). Grain weight of all ears were determined after harvesting and drying to 15% grain moisture. A constant was calculated by dividing ear grain weight b
... Show MoreThe Current research aims to identify ( the effect of Carin model in the achievement of the first intermediate Grade Students and their Reflective Thinking in physics Subject ) the researcher selected the experimental design with a partial adjust , The research sample consisted of ( 47 ) Students with ( 23 ) Students in the experimental group and ( 24 ) Students in the control group , The two groups rewarded in the variables chronological age in months , Reflective Thinking and the degrees in physics in the first course. The researcher coined the purposes of behavioral which belong to chapter fifth, sixth, and seventh of physics books scheduled of the school year ( 2015-2016 ) and prepared appropriate lesson plans for the two experimenta
... Show MorePlanning of electrical distribution networks is considered of highest priority at the present time in Iraq, due to the huge increase in electrical demand and expansions imposed on distribution networks as a result of the great and rapid urban development.
Distribution system planning simulates and studies the behavior of electrical distribution networks under different operating conditions. The study provide understanding of the existing system and to prepare a short term development plan or a long term plan used to guide system expansion and future investments needed for improved network performance.
The objective of this research is the planning of Al_Bayaa 11 kV distribution network in Baghdad city bas
... Show MoreThe traditional method adopted in the preparation of the general budget in Iraq is not consistent with developments in the size specification response and spending and the associated weakness in the size of the amounts earmarked for investment projects which could adversely affect future generations and not to enable them to continue the development, which requires talking to estimate the adoption of style public expenditure in the state budget and reduce waste and extravagant where and invest public revenues of the state in investment projects and preservation of the environment and natural resources in order to ensure the benefit of future generations system, according to the system serves to achieve the overwhelming majority of member
... Show MoreThe steady consumption of fish led many researchers to study it preferences over other foods, especially for radioactivity content. The specific activity concentration (S.A) of natural occurring radioactive materials (NORM) have been measured for Cyprinus carpio fishes collected from several industrial fishes' lakes located in Baghdad governorate using gamma spectroscopy doped with high purity germanium coaxial detector (HPGe). Thirteen fishes' samples were collected from industrial lakes, three samples were collected from cages, and two samples were collected from Trigger River. The last two types of samples were collected in order to compare the results with it. The measured overall averages of S.A for Ra-226, Th-232, and K-40 were 58.
... Show MoreMachine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 a
... Show More