Preferred Language
Articles
/
yRYYXYwBVTCNdQwCTvvj
Predicting the Sporting Achievement in the Pole Vault for Men Using Artificial Neural Networks
...Show More Authors

The physical sports sector in Iraq suffers from the problem of achieving sports achievements in individual and team games in various Asian and international competitions, for many reasons, including the lack of exploitation of modern, accurate and flexible technologies and means, especially in the field of information technology, especially the technology of artificial neural networks. The main goal of this study is to build an intelligent mathematical model to predict sport achievement in pole vaulting for men, the methodology of the research included the use of five variables as inputs to the neural network, which are Avarage of Speed (m/sec in Before distance 05 meters latest and Distance 05 meters latest, The maximum speed achieved in the last 5 meters from the total approach distance of 30 meters, The ratio of the conversion coefficient of horizontal velocity to vertical velocity, The ratio of the conversion coefficient of horizontal velocity to vertical velocity, The height of the fist is over the full length of the pole's stick) and these are considered independent variables, while the dependent variable was the prediction of achievement (Final height achieved by the jumper) as an output. The neural network architecture was represented by three layers, the first layer is the input layer with the five variables, and one layer is hidden and contains one node, while the last layer is the output layer that represents the outcome of the sport achievement prediction of male weight jumping. The momentum term and learning rate were chosen by 0.95 and 0.4 respectively, and the transfer function in the hidden layer was the sigmoid function and in the last layer was the sigmoid function, the historical data used in this model represent the Olympic achievements of a number of world champions, the results of this study were that the artificial neural network has the ability to prediction of sport achievement for determine the height of the jump of the pole player with a degree of accuracy of 90.10%, correlation coefficient and 95.60%.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jun 30 2015
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Using the Artificial Gas Lift to Increase the Productivity of Noor Oil Field / Mishrif Formation
...Show More Authors

Noor Oil Field is one of Iraqi oil fields located in Missan province / Amarah city. This field is not subjected to licensing rounds, but depends on the national effort of  Missan Oil Company. The first two wells in the field were drilled in seventies and were  not opened to production until 2009. The aim of this study is to study the possibility of using the method of gas lift to increase the productivity of this field . PROSPER software was used to design the continuous  gas lift by using maximum production rate in the design.

   The design was made after comparing  the measured pressure with the calculated pressure, this comparison  show  that the method of Beggs-Brill and Petroleum Exper

... Show More
View Publication Preview PDF
Publication Date
Wed Mar 15 2023
Journal Name
Journal Of Survey In Fisheries Sciences
The Correlation of DAZ1 Gene Methylation with Azoospermia in Iraqi Infertile Men
...Show More Authors

After about twelve months or maybe more, some people can’t achieve pregnancy. This might be a sign of infertility as a reproductive system disease. The following study was carried out to investigate the DAZ 1 gene methylation level and its association with azoospermia in Iraqi patients. One hundred and fifty human blood samples were collected from from different regions in Baghdad governorate, including (private medicals Labs and the high institute for infertility diagnosis assisted reproductive techniques and Kamal Al- Samara'ay IVF Hospital) from both fertile and infertile men. The control group consists of 50 samples ranging from 22 to 51 years old, while the patient (infertile group) consists of 100 samples ranging between 25 and 51 y

... Show More
Publication Date
Mon Oct 13 2025
Journal Name
Mesopotamian Journal Of Cybersecurity
Improvement of the Face Recognition Systems Security Against Morph Attacks using the Developed Siamese Neural Network
...Show More Authors

Face Recognition Systems (FRS) are increasingly targeted by morphing attacks, where facial features of multiple individuals are blended into a synthetic image to deceive biometric verification. This paper proposes an enhanced Siamese Neural Network (SNN)-based system for robust morph detection. The methodology involves four stages. First, a dataset of real and morphed images is generated using StyleGAN, producing high-quality facial images. Second, facial regions are extracted using Faster Region-based Convolutional Neural Networks (R-CNN) to isolate relevant features and eliminate background noise. Third, a Local Binary Pattern-Convolutional Neural Network (LBP-CNN) is used to build a baseline FRS and assess its susceptibility to d

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Dec 28 2017
Journal Name
Al-khwarizmi Engineering Journal
Obstacles Avoidance for Mobile Robot Using Enhanced Artificial Potential Field
...Show More Authors

In this paper, an enhanced artificial potential field (EAPF) planner is introduced. This planner is proposed to rapidly find online solutions for the mobile robot path planning problems, when the underlying environment contains obstacles with unknown locations and sizes. The classical artificial potential field represents both the repulsive force due to the detected obstacle and the attractive force due to the target. These forces can be considered as the primary directional indicator for the mobile robot. However, the classical artificial potential field has many drawbacks. So, we suggest two secondary forces which are called the midpoint

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
The Effect Of Optimizers On The Generalizability Additive Neural Attention For Customer Support Twitter Dataset In Chatbot Application
...Show More Authors

When optimizing the performance of neural network-based chatbots, determining the optimizer is one of the most important aspects. Optimizers primarily control the adjustment of model parameters such as weight and bias to minimize a loss function during training. Adaptive optimizers such as ADAM have become a standard choice and are widely used for their invariant parameter updates' magnitudes concerning gradient scale variations, but often pose generalization problems. Alternatively, Stochastic Gradient Descent (SGD) with Momentum and the extension of ADAM, the ADAMW, offers several advantages. This study aims to compare and examine the effects of these optimizers on the chatbot CST dataset. The effectiveness of each optimizer is evaluat

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Wed Jan 04 2023
Journal Name
College Of Islamic Sciences
Predicting the financial distress of companies using logistic regression and its impact on earnings per share in companies listed on the Iraqi Stock Exchange: Predicting the financial distress of companies using logistic regression and its impact on earnings per share in companies listed on the Iraqi Stock Exchange
...Show More Authors

Abstract

The prevention of bankruptcy not only prolongs the economic life of the company and increases its financial performance, but also helps to improve the general economic well-being of the country. Therefore, forecasting the financial shortfall can affect various factors and affect different aspects of the company, including dividends. In this regard, this study examines the prediction of the financial deficit of companies that use the logistic regression method and its impact on the earnings per share of companies listed on the Iraqi Stock Exchange. The time period of the research is from 2015 to 2020, where 33 companies that were accepted in the Iraqi Stock Exchange were selected as a sample, and the res

... Show More
View Publication Preview PDF
Publication Date
Tue Feb 01 2022
Journal Name
Webology
Efficient Eye Recognition for Secure Systems using Convolutional Neural Network
...Show More Authors

Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Webology
Efficient Eye Recognition for Secure Systems Using Convolutional Neural Network
...Show More Authors

AA Abbass, HL Hussein, WA Shukur, J Kaabi, R Tornai, Webology, 2022 Individual’s eye recognition is an important issue in applications such as security systems, credit card control and guilty identification. Using video images cause to destroy the limitation of fixed images and to be able to receive users’ image under any condition as well as doing the eye recognition. There are some challenges in these systems; changes of individual gestures, changes of light, face coverage, low quality of video images and changes of personal characteristics in each frame. There is a need for two phases in order to do the eye recognition using images; revelation and eye recognition which will use in the security systems to identify the persons. The mai

... Show More
View Publication
Publication Date
Tue Apr 01 2025
Journal Name
Journal Of Engineering
Comparative Analysis of The Combined Model (Spatial and Temporal) and Regression Models for Predicting Murder Crime
...Show More Authors

This research dealt with the analysis of murder crime data in Iraq in its temporal and spatial dimensions, then it focused on building a new model with an algorithm that combines the characteristics associated with time and spatial series so that this model can predict more accurately than other models by comparing them with this model, which we called the Combined Regression model (CR), which consists of merging two models, the time series regression model with the spatial regression model, and making them one model that can analyze data in its temporal and spatial dimensions. Several models were used for comparison with the integrated model, namely Multiple Linear Regression (MLR), Decision Tree Regression (DTR), Random Forest Reg

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Journal Of Engineering
Development of Regression Models for Predicting Pavement Condition Index from the International Roughness Index
...Show More Authors

Flexible pavements are considered an essential element of transportation infrastructure. So, evaluations of flexible pavement performance are necessary for the proper management of transportation infrastructure. Pavement condition index (PCI) and international roughness index (IRI) are common indices applied to evaluate pavement surface conditions. However, the pavement condition surveys to calculate PCI are costly and time-consuming as compared to IRI. This article focuses on developing regression models that predict PCI from IRI. Eighty-three flexible pavement sections, with section length equal to 250 m, were selected in Al-Diwaniyah, Iraq, to develop PCI-IRI relationships. In terms of the quantity and severity of eac

... Show More
View Publication Preview PDF
Crossref (5)
Crossref