In this research, the size strain plot method was used to estimate the particle size and lattice strain of CaTiO3 nanoparticles. The SSP method was developed to calculate new variables, namely stress, and strain energy, and the results were crystallite size (44.7181794 nm) lattice strain (0.001211), This method has been modified to calculate new variables such as stress and its value (184.3046308X10-3Mpa) and strain energy and its value (1.115833287X10-6 KJm-3).
There is a great operational risk to control the day-to-day management in water treatment plants, so water companies are looking for solutions to predict how the treatment processes may be improved due to the increased pressure to remain competitive. This study focused on the mathematical modeling of water treatment processes with the primary motivation to provide tools that can be used to predict the performance of the treatment to enable better control of uncertainty and risk. This research included choosing the most important variables affecting quality standards using the correlation test. According to this test, it was found that the important parameters of raw water: Total Hardn
There is currently a pressing need to create an electro-analytical approach capable of detecting and monitoring genosensors in a highly sensitive, specific, and selective way. In this work, Functionalized Multiwall Carbon Nanotubes, Graphene, Polypyrrole, and gold nanoparticles nanocomposite (f-MWCNTs-GR-PPy-AuNP) were effectively deposited on the surface of the ITO electrode using a drop-casting process to modify it. The structural, morphological, and optical analysis of the modified ITO electrodes was carried out at room temperature using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) images, atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectra. Cyclic voltammetry (CV) and electrochemi
... Show MoreIn this work, the effect of preparing a composite of copper oxide nanoparticles with carbon on some of its optical properties was studied. The composite preparing process was carried out by exploding graphite electrodes in an aqueous suspension of copper oxide. The properties of the plasma which is formed during the explosion were studied using emission spectroscopy in order to determine the most important elements that are present in the media. The electron’s density and their energy, which is the main factor in the composite process, were determined. The particle properties were studied before and after the exploding process. The XRD showed an additional peak in the copper oxides pattern corresponding to the hexagonal graphite struct
... Show MoreSome metal ions (Mn+2, Co+2, Ni+2, Cu+2, Zn+2, Cd+2 and Hg+2) complexes of quinaldic acid (QuinH) and α-picoline (α-Pic) have been synthesized and characterized on the basis of their , FTIR, (U.V-Vis) spectroscopy, conductivity measurements, magnetic susceptibility and atomic absorption. From the results obtained the following general formula has suggested for the prepared complexes [M(Quin)2( α-Pic)2].XH2O where M+2 = (Mn, Co, Ni, Cu, Zn, Cd and Hg), X = 2, X = zero for (Co+2 and Hg+2) complexes, (Quin-) = quinaldate ion, (α-Pic) = α-picoline. The results showed that the deprotonated ligand (QuinH) by using (KOH) coordinated to metal ions as bidentate ligand through the oxygen atom of the carboxylate group (-COO-) and the nitrogen ato
... Show MoreSome metal ions (Mn+2, Co+2, Ni+2, Cu+2, Zn+2, Cd+2 and Hg+2) complexes of quinaldic acid (QuinH) and α-picoline (α-Pic) have been synthesized and characterized on the basis of their , FTIR, (U.V-Vis) spectroscopy, conductivity measurements, magnetic susceptibility and atomic absorption. From the results obtained the following general formula has suggested for the prepared complexes [M(Quin)2( α-Pic)2].XH2O where M+2 = (Mn, Co, Ni, Cu, Zn, Cd and Hg), X = 2, X = zero for (Co+2 and Hg+2) complexes, (Quin-) = quinaldate ion, (α-Pic) = α-picoline. The results showed that the deprotonated ligand (QuinH) by using (KOH) coordinated to metal ions as bidentate ligand through the oxygen atom of the carboxylate group (-COO-) and the nitrogen ato
... Show MoreA series of new compounds including p-bromo methyl pheno acetate [2]. N-( aminocarbonyl)–p-bromo pheno acetamide [3] , N-( aminothioyl) -p-bromo phenoacetyl amide [4], N-[4-(p-di phenyl)-1,3-oxazol-2-yl]-p-bromopheno acetamide [5],N-[4-p-di phenyl]-1,3-thiazol-2-yl-p-bromo phenoacet amide [6], p-bromopheno acetic acid hydrazide [7] , 1-N-(p-bromo pheno acetyl)-1,2-dihydro-pyridazin-3,6- dione [8], 1-N-(p-bromo pheno acetyl)-1,2-dihydro-phthalazin-3,8- dione[ 9], 1-(p-bromo pheno acetyl)-3-methylpyrazol-5-one [10] and 1-(p-bromo phenol acetyl)- 3,5-dimethyl pyrazole [11] have been synthesized. The prepared compounds were characterized by m.p.,FT-IR and 1H-NMR spectroscopy. Also ,the biological activity was evaluated .
Objectives: Six different Schiff bases were synthesized from ampicillin and amoxicillin with isatin, 5-bromoisatin, and 5-nitroisatin. Methods: Ampicillin and Amoxicillin are linked directly through their α-amino groups to the acyl side chain with isatin and isatin derivatives by nucleophilic addition using glacial acetic acid as a catalyst. Results: chemical structures of these Schiff bases were confirmed using FTIR, 1H NMR and elemental microanalysis. The antibacterial activity was evaluated by measuring minimum inhibitory concentration (MIC) values and showed various degrees of antibacterial activities when compared with parent drugs. Compounds 1a and 2b, which are the Schiff bases of ampicillin and amoxicillin with isatin, showed very
... Show More