In the present work, a study is carried out to remove chromium (III) from aqueous solution by: activated charcoal, attapulgite and date palm leaflet powder (pinnae). The effect of various parameters such as contact time, and temperature has been studied. The isotherm equilibrium data were well fitted by Freundlich and Langmuir isotherm models. The adsorption capacity of chromium (III) that was observed by activated charcoal, attapulgite and date palm leaflet powder (pinnae) increased with the rise of temperature when the concentrations of Cr (III) were 600, 700 and 100mg/L respectively. The greatest adsorption capacity ofactivated charcoal, attapulgite and date palm leaflet powder (pinnae) at 10°C was 7.51, 5.39 and 0.77mg.gˉ¹ respectively and reaching 9.99, 8.82 and 1.43mg.gˉ¹ at 37.5°C. The thermodynamics study showed that the chromium (III) ions adsorption is endothermic and spontaneous with the increase of randomness at the solid-solution interface that involves adsorption and absorption mechanism.
An investigation was conducted for the study of extraction of metal ions using aqueous biphasic systems. The extraction of iron, zinc and copper from aqueous sulphate media at different kinds of extractants SCN− , Cl- and I- , different values of pH of the feed solution, phase ratio, concentration of metals, concentration of extractant, concentration of polymer, and concentration of salt was investigated. Atomic absorption spectrophotometer was used to measure the concentration of iron, zinc and copper in the aqueous phase throughout the experiments. The results of the extraction experiments showed the use of SCN− as extractant, pH=2.5, phase ratio=1.5, concentration of metals 1g/l, concentration of extractant 0.06 %, concentration o
... Show MoreCombining different treatment strategies successively or simultaneously has become recommended to achieve high purification standards for the treated discharged water. The current work focused on combining electrocoagulation, ion-exchange, and ultrasonication treatment approaches for the simultaneous removal of copper, nickel, and zinc ions from water. The removal of the three studied ions was significantly enhanced by increasing the power density (4–10 mA/cm2) and NaCl salt concentration (0.5–1.5 g/L) at a natural solution pH. The simultaneous removal of these metal ions at 4 mA/cm2 and 1 g NaCl/L was highly improved by introducing 1 g/L of mordenite zeolite as an ion-exchanger. A remarkable removal of heavy metals was reported
... Show MoreCombining different treatment strategies successively or simultaneously has become recommended to achieve high purification standards for the treated discharged water. The current work focused on combining electrocoagulation, ion-exchange, and ultrasonication treatment approaches for the simultaneous removal of copper, nickel, and zinc ions from water. The removal of the three studied ions was significantly enhanced by increasing the power density (4–10 mA/cm2) and NaCl salt concentration (0.5–1.5 g/L) at a natural solution pH. The simultaneous removal of these metal ions at 4 mA/cm2 and 1 g NaCl/L was highly improved by introducing 1 g/L of mordenite zeolite as an ion-exchanger. A remarkable removal of heavy metals was reported
... Show MoreTransference numbers of the aqueous zinc chloride and zinc sulphate solutions have been measured for the concentrations 0.03, 0.05, 0.07, 0.09 and 0.1 mol.dm-3at 298.15K, by using the modified Hittorf method. The dependence of transference number on concentration of each electrolyte was also investigated in an attempt to explain the value of the limiting transference number. The Longsworth method has been used for the extrapolation of zinc transference number in aqueous solutions, using the values of the limiting transference numbers of the appropriate values of the limiting equivalent conductance, it was possible to determine the corresponding values of the limiting ion conductance for the cations and anions of the electrolytes. The
... Show MoreMolar conductivity of different concentrations of thymine and adenosine in water , sodium acetate and ammonium chloride solution at different temperatures , 283. 15-323.15 K has been determined from direct conductivity measurements , examination of aqueous mixture of thymine and adenosine with Onsager equation reveal deviation from linearity at high concentration .This deviation was explained in term of molecular interaction . Ostwald dilution law also examined with the above mixtures lead to calculation of limiting molar conductivities and dissociation constants of both nucleic acid in water , sodium acetate and ammonium chloride. The agreement between the values obtained for Onsager equa
... Show MoreMolar conductivity of different concentrations of thymine and adenosine in water , sodium acetate and ammonium chloride solution at different temperatures , 283. 15-323.15 K has been determined from direct conductivity measurements , examination of aqueous mixture of thymine and adenosine with Onsager equation reveal deviation from linearity at high concentration .This deviation was explained in term of molecular interaction . Ostwald dilution law also examined with the above mixtures lead to calculation of limiting molar conductivities and dissociation constants of both nucleic acid in water , sodium acetate and ammonium chloride. The agreement between the values obtained for Onsager equation and Ostwald law was reaso
... Show MoreA spectrophotometric study of Fe(III) mixed ligand complex has been
performed involving 1,4 phenylenediamine (A) and anthran i lic acid (B) ligand at 25°C and aconstant ionic strength of µ= 0.05M NaC I04• The optimum pH was found to be pH=4.l. The format ion rat io of the new complex is determined to be 2:1:4 of Fe(III):(A):(B). The molar absorptivity was determined to be :::::: 0.5 x I 04• Stepwise spectrum change of the complex formation is recorded by continuous flow system. Keywords: Mixed ligand
... Show MorePseudomonas aeruginosa readily binds to different kind of abiotic surfaces and form biofilm. The ability of the bacterial species to form biofilm onto polyvinyl chloride (PVC) is associated with several economic, health and environmental problems. The effect of kind of water on ability of this bacterium to form biofilm is scanty in literature. In present study, the ability of different environmental isolates of P. aeruginosa to form biofilm onto polystyrene microtiter plate was evaluated. Furthermore, the effect of waters that collected from different sources on biofilm formation of this bacterium onto PVC was studied. Spectrophotometric method was used to check the ability of bacteria to form biofilm and evaluated the role of waters onto a
... Show MoreBioremoval of chromium from wastewater of tannery factory in Iraq was studied. The bacteria Proteus vulgaris 7E showed an enhanced capability in biosorping chromium when its concentration increased in the solution, reaching a maximum of 476,7 mg/ ml out of 492 mg/ ml under optimum conditions at pH 6 and 50°C at one hour contact time and biomass of 1 mg/ml. The present results showed that dead cells of P. vulgaris 7E biosorbed 87.41 mg/ml of chromium in comparison with91.18 mg/ml of chromium biosorbed by living cells, this indicates the insignificant effect of physiological state of cells. It was found that the above biosorption is physico-chemical process depends upon electrostatic attraction forces. The results has illustrated that the
... Show More