Credit card fraud has become an increasing problem due to the growing reliance on electronic payment systems and technological advances that have improved fraud techniques. Numerous financial institutions are looking for the best ways to leverage technological advancements to provide better services to their end users, and researchers used various protection methods to provide security and privacy for credit cards. Therefore, it is necessary to identify the challenges and the proposed solutions to address them. This review provides an overview of the most recent research on the detection of fraudulent credit card transactions to protect those transactions from tampering or improper use, which includes imbalance classes, concept drift, and verification latency problems using machine learning and deep learning. It also provides valuable information for academic and industrial researchers and opens new avenues for research aimed at developing robust fraud detection systems.
objectives: To investigate the polyomaviruses (BK, JC) in asymptomatic kidney transplant recipients and healthy persons as control. It is one of the first reports on serological detection and molecular characterization that describes the circulation of polyomaviruses (BKV, JCV) have been done in Iraq recently. Methodology: The present study was designed as prospective case control study was done during the period from November 2015 to August 2016. Total of 97 serum and urine samples were collected randomly from 25 healthy control person and 72 renal transplant recipients, attending Iraqi Renal Transplantatio
This paper presents a complete design and implementation of a monitoring system for the operation of the three-phase induction motors. This system is built using a personal computer and two types of sensors (current, vibration) to detect some of the mechanical faults that may occur in the motor. The study and examination of several types of faults including (ball bearing and shaft misalignment faults) have been done through the extraction of fault data by using fast Fourier transform (FFT) technique. Results showed that the motor current signature analysis (MCSA) technique, and measurement of vibration technique have high possibility in the detection and diagnosis of most mechanical faults with high accuracy. Subsequently, diagnosi
... Show MoreINTRODUCTION: A range of tools and technologies are at disposal for the purpose of defect detection. These include but are not limited to sensors, Statistical Process Control (SPC) software, Artificial Intelligence (AI) and machine learning (ML) algorithms, X-ray systems, ultrasound systems, and eddy current systems. OBJECTIVES: The determination of the suitable instrument or combination of instruments is contingent upon the precise production procedure and the category of flaw being identified. In certain cases, defects may necessitate real-time monitoring and analysis through the use of sensors and SPC software, whereas more comprehensive analysis may be required for other defects through the utilization of X-ray or ultrasound sy
... Show MoreRegarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct
... Show MoreEnvironmental pollution is experiencing an alarming surge within the global ecosystem, warranting urgent attention. Among the significant challenges that demand immediate resolution, effective treatment of industrial pollutants stands out prominently, which for decades has been the focus of most researchers for sustainable industrial development aiming to remove those pollutants and recover some of them. The liquid membrane (LM) method, specifically electromembrane extraction (EME), offers promise. EME deploys an electric field, reducing extraction time and energy use while staying eco-friendly. However, there's a crucial knowledge gap. Despite strides in understanding and applying EME, optimizing it for diverse industrial pollutant
... Show MoreAlthough text document images authentication is difficult due to the binary nature and clear separation between the background and foreground but it is getting higher demand for many applications. Most previous researches in this field depend on insertion watermark in the document, the drawback in these techniques lie in the fact that changing pixel values in a binary document could introduce irregularities that are very visually noticeable. In this paper, a new method is proposed for object-based text document authentication, in which I propose a different approach where a text document is signed by shifting individual words slightly left or right from their original positions to make the center of gravity for each line fall in with the m
... Show MoreIn this work a fragile watermarking scheme is presented. This scheme is applied to digital color images in spatial domain. The image is divided into blocks, and each block has its authentication mark embedded in it, we would be able to insure which parts of the image are authentic and which parts have been modified. This authentication carries out without need to exist the original image. The results show the quality of the watermarked image is remaining very good and the watermark survived some type of unintended modification such as familiar compression software like WINRAR and ZIP