This paper addresses the substrate temperature effect on the structure, morphological and optical properties of copper oxide (CuO) thin films deposited by pulsed laser deposition (PLD) method on sapphire substrate of 150nm thickness. The films deposited at two different substrate temperatures (473 and 673)K. The atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) and UV-VIS transmission spectroscopy were employed to characterize the size, morphology, crystalline structure and optical properties of the prepared thin films. The surface characteristics were studied by using AFM. It is found that as the substrate temperature increases, the grain size increased but the surface roughness decreased. The FTIR spec
... Show MorePolymer blended electrolytes of various concentrations of undoped PAN/PMMA (80/20, 75/25, 70/30, 65/35 and 60/40 wt%) and doped with lithium salts (LiCl, Li2SO4H2O, LiNO3, Li2CO3) at 20% wt have been prepared by the solution casting method using dimethylformamide as a solvent. The electrical conductivity has been carried out using an LCR meter. The results showed that the highest ionic conductivity was 2.80x10-7 (Ω.cm)-1 and 1.05x10-1 (Ω.cm)-1 at 100 kHz frequency at room temperature for undoped (60% PAN + 40% PMMA) and (80% PAN + 20% PMMA) doped with 20%wt Li2CO3 composite blends, respect
... Show MoreThe eff ect of partial substitution for lanthanum (La) on the structural properties of the compound Y1-xLaxBa4Cu7O15+δ were studied. The variation of (x) are x=0.1, 0.2 and 0.3, which was synthesized by solid state reaction method. The mixed powder was pressed with pressure (7 ton / cm2) as a disc (1.5 cm) diameter and a thickness of (0.25 to 0.3 cm). The samples were sintering by 120 °C / hour with a changing rate from room temperature to 850 ° C through 72 hours. XRD analysis using to calculate crystal size, strain and degree of crystallinity. It was found all samples have orthorhombic structure and change of structure with increasing lanthanum concentration. It was shown that the change lanthanum concentrations of all our samp
... Show MoreIn the present work, silver nanoparticles were prepared. Nonlinear optical properties and
optical limiting of silver nanoparticles were investigated.Standard chemical synthesis method was used at
diffrent weight ratio(0.038, 0.058 and 0.078) of silver nitrate. Several testing were done to obtain the
characteristics of the sample. Z-Scan experiments were performed using 30 ns Q-switched Nd:YAG
laser at 1064 nm and 532 nm at different intensities. The results showed that the nonlinear refractive
index is directly proportional to the input intensities, which caused by the self-focusing of the material.
In addition, the optical limiting behavior has been studied. The results showed that the sample could be
used as an opt
Zinc sulfide(ZnS) thin films of different thickness were deposited on corning glass with the substrate kept at room temperature and high vacuum using thermal evaporation technique.the film properties investigated include their absorbance/transmittance/reflectance spectra,band gap,refractive index,extinction coefficient,complex dielectric constant and thickness.The films were found to exhibt high transmittance(59-98%) ,low absorbance and low reflectance in the visible/near infrared region up to 900 nm..However, the absorbance of the films were found to be high in the ultra violet region with peak around 360 nm.The thickness(using optical interference fringes method) of various films thichness(100,200,300,and 400) nm.The band gap meas
... Show MoreChalcopyrite thin films ternary Silver Indium Diselenide AgInSe2 (AIS) pure and Aluminum Al doped with ratio 0.03 was prepared using thermal evaporation with a vacuum of 7*10-6 torr on glass with (400) nm thickness for study the structural and optical properties. X-ray diffraction was used to show the inflance of Al ratio dopant on structural properties. X-ray diffraction show that thin films AIS pure, Al doped at RT and annealing at 573 K are polycrystalline with tetragonal structure with preferential orientation (112). raise the crystallinity degree. AFM used to study the effect of Al on surfaces roughness and Grain Size Optical properties such as the optical band gap, absorption coefficient, Extinction coefficient, refractive ind
... Show MoreZinc Oxide (ZnO) thin films of different thickness were prepared
on ultrasonically cleaned corning glass substrate, by pulsed laser
deposition technique (PLD) at room temperature. Since most
application of ZnO thin film are certainly related to its optical
properties, so the optical properties of ZnO thin film in the
wavelength range (300-1100) nm were studied, it was observed that
all ZnO films have high transmittance (˃ 80 %) in the wavelength
region (400-1100) nm and it increase as the film thickness increase,
using the optical transmittance to calculate optical energy gap (Eg
opt)
show that (Eg
opt) of a direct allowed transition and its value nearly
constant (~ 3.2 eV) for all film thickness (150
In this manuscript divide into two parts the first experimental and the second theoretical. The experimental part of polyvinyl chloride (PVC) can be used with aluminum (30%). Nanomaterials are synthesized by a laser pulse melting solution by ethanol. The effect of laser on the structural, morphological, optical, and electrical properties of nanoparticles (PVC) was examined by UV spectroscopy, x-ray diffraction (XRD), electron microscopy (TEM). The theoretical part of the DFT can be used to approximate the generalized gradient of the Perdew, Burke, and Ernzerhof (PBE) / 6-31G (d) groups, which were created using additional Gaussian 09 software through Gaussian 5.08. To build PVC nanocrystal pure which chemical formula [(C2H3Cl)n] and build (
... Show MorePurepolyaniline and doped with hydrochloric acid was prepared in different molarities at room temperature. The a.c electrical properties were stadied.AC conductivityσac (ω), is found to vary as ωS in the frequency range (100Hz-10MH), S< 1and decreases indicating a dominate hopping process. Thedielectric constant ε1and dielectric loss ε2 have been determined for bulk polyaniline. ε1 decrease with the increase frequency. Electrical conductivity measurements increase with the increases both of the amount of HCl and the dose of radiation. The dielectric investigations show decrease with dose radiation.