In this article, we will present a quasi-contraction mapping approach for D iteration, and we will prove that this iteration with modified SP iteration has the same convergence rate. At the other hand, we prove that the D iteration approach for quasi-contraction maps is faster than certain current leading iteration methods such as, Mann and Ishikawa. We are giving a numerical example, too.
The aim of this article, we define new iterative methods called three-step type in which Jungck resolvent CR-iteration and resolvent Jungck SP-iteration are discussed and study rate convergence and strong convergence in Banach space to reach the fixed point which is differentially solve of nonlinear equations. The studies also expanded around it to find the best solution for nonlinear operator equations in addition to the varying inequalities in Hilbert spaces and Banach spaces, as well as the use of these iterative methods to approximate the difference between algorithms and their images, where we examined the necessary conditions that guarantee the unity and existence of the solid point. Finally, the results show that resolvent CR-iter
... Show MoreIn this paper , an efficient new procedure is proposed to modify third –order iterative method obtained by Rostom and Fuad [Saeed. R. K. and Khthr. F.W. New third –order iterative method for solving nonlinear equations. J. Appl. Sci .7(2011): 916-921] , using three steps based on Newton equation , finite difference method and linear interpolation. Analysis of convergence is given to show the efficiency and the performance of the new method for solving nonlinear equations. The efficiency of the new method is demonstrated by numerical examples.
Let M be an R-module, where R be a commutative; ring with identity. In this paper, we defined a new kind of submodules, namely T-small quasi-Dedekind module(T-small Q-D-M) and essential T-small quasi-Dedekind module(ET-small Q-D-M). Let T be a proper submodule of an R-module M, M is called an (T-small Q-D-M) if, for all f ∊ End(M), f ≠ 0, implies
In this paper, we introduce the concept of almost Quasi-Frobcnius fuzzy ring as a " " of Quasi-Frobenius ring. We give some properties about this concept with qoutient fuzzy ring. Also, we study the fuzzy external direct sum of fuzzy rings.
in this paper, we give a concept of
In this paper, developed Jungck contractive mappings into fuzzy Jungck contractive and proved fuzzy fixed point for some types of generalize fuzzy Jungck contractive mappings.
High temperature superconductors with a nominal composition HgBa2Ca2Cu3O8+δ
for different values of pressure (0.2,0.3, 0.5, 0.6, 0.9, 1.0 & 1.1)GPa were prepared by
a solid state reaction method. It has been found that the samples were semiconductor
P=0.2GPa.while the behavior of the other samples are superconductor in the rang
(80-300) K. Also the transition temperature Tc=143K is the maximum at P is equal to
0.5GPa. X-ray diffraction showed a tetragonal structure with the decreasing of the
lattice constant c with the increasing of the pressure. Also we found an increasing of
the density with the pressure.