In mammals, the kidneys originate in an embryo from the mesoderm through three excretory organs, namely: Pronephros, Mesonephros, and Metanephros. After the formation of Metanephros is completed, the kidneys begin to form nephrogenesis through mesenchymal cells located at the tip of the ureteric bud, that contribute in the formation of glomerulus and Renal tubules. The stages of glomerulus formation in the embryo of albino mice at the age of 14 to 19 days of gestation were studied. It was obtained after the sacrifice of the expectant mother and the kidneys were excised from the embryos and fixed using Aqueous Bouin's solution, Microscopic slices with a thickness of 6 microns were then made in a paraffin method and were photographed by a camera for microscopic imaging. Histological measurements were performed on them using the program IMAGE J program and analyzed statistically using the SPSS program. Results of the current study showed the presence of five stages of glomerulus formation, namely, the renal vesicle, which represents the first stage in the formation of the nephron and glomerulus. This is followed by the Comma shape stage, S-shaped stage, Capillary loop stage and finally the Mature glomerulus. This is surrounded by a capsule, known as Bowman’s capsule being part of the Malpighian or Renal corpuscle. The statistical analysis showed that there were significant differences between the average diameters of the glomerular development stages, and that the mature glomerulus was larger in diameter than the rest of the stages. The study aims to determine the stages of glomerulus formation and histologically measure its diameter in the embryo of a Mus musculus.
Herein, we report designing a new Δ (delta‐shaped) proton sponge base of 4,12‐dihydrogen‐4,8,12‐triazatriangulene (compound
Experimental measurements were done for characterizing current-voltage and power-voltage of two types of photovoltaic (PV) solar modules; monocrystalline silicon (mc-Si) and copper indium gallium di-selenide (CIGS). The conversion efficiency depends on many factors, such as irradiation and temperature. The assembling measures as a rule cause contrast in electrical boundaries, even in cells of a similar kind. Additionally, if the misfortunes because of cell associations in a module are considered, it is hard to track down two indistinguishable photovoltaic modules. This way, just the I-V, and P-V bends' trial estimation permit knowing the electrical boundaries of a photovoltaic gadget with accuracy. This measure
... Show MoreThe essay discusses how different environmental factors affect plant growth by explaining how each factor affects the physiological processes within the plant. The essay begins by explaining the effect of temperature on plant growth, as high or low temperatures can significantly affect the rate of photosynthesis and lead to a reduction in water and nutrient absorption. It also discusses the light intensity impacting plants because the more appropriate the light intensity is, the more enhanced the plant's photosynthesis ability, and in the excess or insufficient light condition, the growth can be inhibited. Additionally, the article outlines the effect of water shortage on the plant because this leads to the closure of stomata to avoid water
... Show MoreThe target of this study was to synthesize several new Ciprofloxacin drug analogs by providing a nucleophilic substitution procedure that provides new functionality at the carboxylic group location. The analogs were synthesized, designed, and characterized by 1HNMR, and FTIR. The synthetic path began from the reaction of ciprofloxacin drug with morpholine to give compound[B], ciprofloxacin derivative was linked with a variety of primary and secondary amines to give compounds[B1-B9]. The above-mentioned prepared compounds [B3 and B5] were applied to liver enzymes, and the increase in the activity of these enzymes was observed. In addition, a theoretical study was conducted to study the energies and properties of the prepared co
... Show MoreBackground: The mechanical properties of 3D-printed denture base resins are crucial factors for determining the quality and performance of dentures inside a patient’s mouth. Tensile strength and diametral compressive strength are two properties that could play significant roles in assessing the suitability of a material. Although they measure different aspects of material behavior, a conceptual link exists between them in terms of overall material strength and resilience. Aim: This study aims to investigate the correlation between tensile strength and diametral compressive strength after incorporating 2% ZrO2 nanoparticles (NPs) by weight into 3D-printed denture base resin. Methods: A total of 40 specimens (20 dumbbell-shaped and
... Show MoreThe 3D electro-Fenton technique is, due to its high efficiency, one of the technologies suggested to eliminate organic pollutants in wastewater. The type of particle electrode used in the 3D electro-Fenton process is one of the most crucial variables because of its effect on the formation of reactive species and the source of iron ions. The electrolytic cell in the current study consisted of graphite as an anode, carbon fiber (CF) modified with graphene as a cathode, and iron foam particles as a third electrode. A response surface methodology (RSM) approach was used to optimize the 3D electro-Fenton process. The RSM results revealed that the quadratic model has a high R2 of 99.05 %. At 4 g L-1 iron foam particles, time of 5 h, and
... Show More