<p> Traditionally, wireless networks and optical fiber Networks are independent of each other. Wireless networks are designed to meet specific service requirements, while dealing with weak physical transmission, and maximize system resources to ensure cost effectiveness and satisfaction for the end user. In optical fiber networks, on the other hand, search efforts instead concentrated on simple low-cost, future-proofness against inheritance and high services and applications through optical transparency. The ultimate goal of providing access to information when needed, was considered significantly. Whatever form it is required, not only increases the requirement sees technology convergence of wireless and optical networks but also played an important role in future communication networks. Some technical development of wireless access networks-optical and seamless coexistence of both techniques, this paper is a review of the State of the latest developments and advances in optical and wireless communications, major technical challenges to provide flawless communication in fiber- wireless (FiWi) access networks, places of interest important research issues to provide intelligence information, access and transport and the convergence of these networks in the future.</p>
The humid and warm conditions in greenhouses provide an excellent environment for pests’ living conditions, and therefore, they provide ideal medium for alien introductions. Molluscs are among the most significant pests that infest plastic covered greenhouses. To identify and report their mollusc species, 23 greenhouses in Iraq were surveyed between March 2023 and April 2024. Of these, 11 were found to be infested with snails. A total of 158 specimens were collected and morphologically identified to seven species: Monacha obstructa (L. Pfeiffer, 1842), Eobania vermiculata (O.F. Müller, 1774), Xeropicta krynickii (Krynicki, 1833), Rumina decollata (Linnaeus, 1758), Polygyra cereolus (Megerle Von Mühlfeld, 1818), Cochlicella barba
... Show MoreThis paper presents a modified training method for Recurrent Neural Networks. This method depends on the Non linear Auto Regressive (NARX) model with Modified Wavelet Function as activation function (MSLOG) in the hidden layer. The modified model is known as Modified Recurrent Neural (MRN). It is used for identification Forward dynamics of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot. This model is also used in the design of Direct Inverse Control (DIC). This method is compared with Recurrent Neural Networks that used Sigmoid activation function (RS) in the hidden layer and Recurrent Neural Networks with Wavelet activation function (RW). Simulation results shows that the MRN model is bett
... Show MoreThis work implements the face recognition system based on two stages, the first stage is feature extraction stage and the second stage is the classification stage. The feature extraction stage consists of Self-Organizing Maps (SOM) in a hierarchical format in conjunction with Gabor Filters and local image sampling. Different types of SOM’s were used and a comparison between the results from these SOM’s was given.
The next stage is the classification stage, and consists of self-organizing map neural network; the goal of this stage is to find the similar image to the input image. The proposal method algorithm implemented by using C++ packages, this work is successful classifier for a face database consist of 20
... Show MoreIn the latest years there has been a profound evolution in computer science and technology, which incorporated several fields. Under this evolution, Content Base Image Retrieval (CBIR) is among the image processing field. There are several image retrieval methods that can easily extract feature as a result of the image retrieval methods’ progresses. To the researchers, finding resourceful image retrieval devices has therefore become an extensive area of concern. Image retrieval technique refers to a system used to search and retrieve images from digital images’ huge database. In this paper, the author focuses on recommendation of a fresh method for retrieving image. For multi presentation of image in Convolutional Neural Network (CNN),
... Show MoreThis research study the effect of surface modification and copper (Cu) plating carbon fiber (CF) surface on the thermal stability and wettability of carbon fiber (CF)/epoxy (EP) composites. The TGA result indicates that the thermal-stability of carbon fiber may be enhanced after Cu coating CF. TGA curve showed that the treatment temperature was enhanced thermal stability of Ep/CF, this is due to the oxidation during heating. The Cu plating increased the thermal conductivity, this increase might be due to reduce in contact resistance at the interface due to chemical modification and copper plating and tunneling resistance.
The increase of surface polarity after coating cause decreas
... Show MoreBackground Parkinson’s disease (PD) is currently the fastest-growing neurological disorder in the world. Patients with PD face numerous challenges in managing their chronic condition, particularly in countries with scarce healthcare infrastructure. Objective This qualitative study aimed to delve into neurologists’ perspectives on challenges and gaps in the Iraqi healthcare system that influence the management of PD, as well as strategies to mitigate these obstacles. Method Semi-structured interviews were conducted with neurologists from five different Iraqi provinces, working in both hospitals and private neurology clinics, between November 2024 and January 2025. A thematic analysis approach was employed to identify the main challenge
... Show MoreThyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid dise
... Show More