In this work, thermodynamic efficiency of individual cell and stack of cells (two cells) has been computed by studying the variation of voltage produced during an operation time of 30 min as a result of the affected parameters:- stoichiometric feed ratio, flow field design on single cell and feed distribution on stack of cells. The experiments were carried out by using two cells, one with serpentine flow field and the other with spiral flow field. These cells were fed with hydrogen and oxygen at low volumetric flow rates from 1 to 2 ml/sec and stoichiometric ratios of fuel (H2) to oxidant (O2) as 1:2, 1:1 and 2:1 respectively. The results showed that
... Show MoreOptoelectronic devices, widely used in high energy and nuclear physics applications, suffer severe radiation damage that leads to degradations in its efficiency. In this paper, the influence of gamma radiation (137Ce source) and beta radiation (90Sr source) on the photoelectric parameters of the Si solar cell, based on the I–V characterization at different irradiation exposer, has been studied. The penetrating radiation produces defects in the base material, may be activated during its lifetime, becoming traps for electron–hole pairs produced optically and, this will, decrease the efficiency of the solar cell. The main objective of the paper is to study and measure changes in the I–V characteristics of solar cells, such as efficienc
... Show MoreAb – initio restricted Hartree - Fock method within the framework of large unit cell (LUC) formalism is used to investigate the electronic structure of Si and Ge nanocrystals. The surface and core properties are investigated. A large unit cell of 8 atoms is used in the present analysis. Cohesive energy, energy gap, conduction and valence band widths are obtained from the electronic structure calculations. The results are compared with available experimental data and theoretical results of other investigators. The calculated lattice constant is found to be slightly larger than the corresponding experimental value because we use only 8 atoms and we compared the results with that of the bulk crystals, nanoclusters are expected to have str
... Show MoreAbstract: Recombinant Newcastle disease virus (rNDV) has shown an anticancer effect in preclinical studies, but has never been tested in a lung cancer models. In this study we explored the anticancer activity of genetically modified NDV expressing IL-2-P53 (rClone30–IL-2-P53) in lung cancer model. We have cloned IL-2 and P53 genes and inserted them in the viral genome of New Castle Disease Virus to create a genetically modified rNDV- IL-2-P53 virus and tested the anti-tumor activity of the new virus in vitro on different types of cancer cell lines by MTT assay. TheIL-2 and P53 gene were successfully cloned and inserted into the viral genome by using a Mlu I and Sfi I endonucleases, viral vector was constructed correctly and successf
... Show MoreA friction stir spot welding (FSSW) process is an emerging solid state joining process in which the material that is being welded does not melt. In this investigation an attempt has been made to understand the effect of tool shoulder diameter on the mechanical properties of the joint. For this purpose four welding tools diameter (10,13, 16 and 19) mm at constant preheating time and plunging time were used to carry
out welding process. Effect of tool diameter on mechanical properties of welded joints was investigated using shear stress test and Microhardness of joint which welded was studied. Based on the stir welding experiments conducted in this study the results show that aluminum alloy (1200) can be welded using (FSSW) process with
The structural, optical properties of cupper indium gallium selenite (CuIn1-xGaxSe) have been studied. CuIn1-xGaxSe thin films for x=0.6 have been prepared by thermal evaporation technique, of 2000±20 nm thickness, with rate of deposition 2±0.1 nm/sec, on glass substrate at room temperature. Heat treatment has been carried out in the range (373-773) K for 1 hour. It demonstrated from the XRD method that all the as-deposited and annealed films have polycrystalline structure of multiphase. The optical measurement of the CIGS thin films conformed that they have, direct allowed energy gap equal to 1.7 eV. The values of some important optical parameters of the studied films such as (absorption coefficient, refractive index, extinction coeffici
... Show MoreBackground: Polishing technique for acrylic resin material have great effect on properties of acrylic material and bacterial colonization such as staphylococcus aurous, which are responsible for many acrylic prosthetic infections such as the commonly ocular infections. Ineffective polishing technique could affect roughness and subsequently porosity of acrylic materials.So, a new effective method for polishing acrylic was used depending on the use of optiglaze coating material. So, this study aimed to evaluate the effect of optiglaze polishing on porosity of acrylic resin material and staphylococcus aurous activity in comparison to conventional polishing technique.
Materials and methods: Specimen(n=120) were prepared :20 spe
... Show MoreThe current study introduces a novel technique to handle electrochemical localized corrosion in certain limited regions rather than applying comprehensive cathodic protection (CP) treatment. An impressed current cathodic protection cell (ICCPC) was fabricated and firmly installed on the middle of a steel structure surface to deter localized corrosion in fixed or mobile steel structures. The designed ICCPC comprises three essential parts: an anode, a cathode, and an artificial electrolyte. The latter was developed to mimic the function of the natural electrolyte in CP. A proportional-integrated-derivative (PID) controller was designed to stabilize this potential below the ICCPC at a cathodic potential of −850 mV, which is crucial for prote
... Show MoreThe catalytic wet air oxidation (CWAO) of phenol has been studied in a trickle bed reactor
using active carbon prepared from date stones as catalyst by ferric and zinc chloride activation (FAC and ZAC). The activated carbons were characterized by measuring their surface area and adsorption capacity besides conventional properties, and then checked for CWAO using a trickle bed reactor operating at different conditions (i.e. pH, gas flow rate, LHSV, temperature and oxygen partial pressure). The results showed that the active carbon (FAC and ZAC), without any active metal supported, gives the highest phenol conversion. The reaction network proposed account
... Show More