M. domestica is the most important insect that transmit pathogens for diseases in the world. The use of nanotechnology is eco-friendly method in control pests. The study aims to investigate the feasibility of bio-manufacturing nanocapsules of fungal secondary metabolites in order to improve the efficiency of metabolite and assess their inhibitory effect on the acetylcholine esterase enzyme in housefly larvae. An equal mixture of organic solvents, ethyl acetate and dichloromethane, was used to extract the metabolic products of the fungus M. anisopliae, (PEG4000) and chitosan was used in the preparation of nanocapsules. The results of the DLS granular size assay showed that the size of the extract particles and the size of the chitosan and (PEG 4000) nanocapsules were 610, 217 and 188 nm, respectively. The SEM images showed that the diameter of the extract and the nanocapsules chitosan and polyethylene glycol 4000 reached a rate 547.5, 17.8 and 26.2 nm, respectively. The FTIR showed that the extract of the second products of the fungus contains functional groups like: alkynes and alkenes, amines, carboxyl and aromatic groups, while the presence of groups of phenols, alcohol, amines, alkenes, and alkyl halides was recorded for nanocapsules of chitosan and PEG. The results showed that the extract of fungal metabolic and nanocapsules has an inhibitory effect on acetylcholinesterase enzyme and reached the highest inhibition rate 53.2 ,36.3,18.2% when treated with nanocapsules PEG at a concentration 500 ppm, extract of fungal metabolites at a concentration 50,000 ppm, chitosan nanocapsules at a concentration 500 ppm respectively. It is clear that acetylcholinesterase inhibition is one of the mechanisms of fungi metabolic action and the nanocapsules prepared from them.
An experiment during the two seasons 2019, 2020. The experiment conducted according to Split Plot Design by two factors; the first was addition Nano NPK with five levels (control, addition 7.5 g.plant-1, addition 15 g.plant-1, spray 1 g.L-1, spray 2 g.L-1). The second factor was four levels of Mineral NPK which were (control, 50 g.plant-1, 100 g.plant-1, 50 g.plant-1+1.5 g.L-1) respectively. N3 (spray 1 g.L-1 ) increased plant height, stem diameter first season, branch number se
Olive leaves extract is famous for its antioxidant and protective effects. In this study, the aqueous extract of Iraqi Olea europaea L. Leaves was investigated for its anti-diabetic effects against low double doses of alloxan induced Diabetes Mellitus in rats. Low double doses (75 mg\Kg body weight) of alloxan were injected intraperitoneally at day 1&29 of the experimental period in rats, whereas an aqueous extract of Iraqi Olea europaea L. Leaves was added continuously to their drinking water. Serum malondialdehyde concentration, total oxidative stress and oxidative stress index as oxidoreductive stress biomarker, activities of certain antioxidoreductive stress enzymes (glutathione peroxidase, super oxide dismutase and catalase) and concen
... Show MoreOlive leaves extract is famous for its antioxidant and protective effects. In this study, the aqueous extract of Iraqi Olea europaea L. Leaves was investigated for its anti-diabetic effects against low double doses of alloxan induced Diabetes Mellitus in rats. Low double doses (75 mgKg body weight) of alloxan were injected intraperitoneally at day 1&29 of the experimental period in rats, whereas an aqueous extract of Iraqi Olea europaea L. Leaves was added continuously to their drinking water. Serum malondialdehyde concentration, total oxidative stress and oxidative stress index as oxidoreductive stress biomarker, activities of certain anti-oxidoreductive stress enzymes (glutathione peroxidase, super oxide dismutase and catalase) and concen
... Show MoreCocoon of larva
Objective: To diagnose the function of natural biomolecules in the biological reduction of metal salts during nanoparticle synthesis.Study Design: Experimental studyPlace and Duration of Study: This study was conducted at the College of Education for Pure Sciences/Ibn Al- Haitham at the University of Baghdad from 1st January 2024 to 31st March 2025. Methods: Capsicum plant extract was used and treated with a readily available inorganic salt (CaSO4 2H2O). It was used as a basic material to obtain particles.Results: Calcium peroxide nanoparticles in the form of a yellowish-white powder were confirmed by using, UV, XRD, SEM, TEM, AFM, and EDX, confirmed that the compound is calcium peroxide nanoparticles with an average nano size of 31
... Show MoreObjective: To diagnose the function of natural biomolecules in the biological reduction of metal salts during nanoparticle synthesis.Study Design: Experimental studyPlace and Duration of Study: This study was conducted at the College of Education for Pure Sciences/Ibn Al- Haitham at the University of Baghdad from 1st January 2024 to 31st March 2025. Methods: Capsicum plant extract was used and treated with a readily available inorganic salt (CaSO4 2H2O). It was used as a basic material to obtain particles.Results: Calcium peroxide nanoparticles in the form of a yellowish-white powder were confirmed by using, UV, XRD, SEM, TEM, AFM, and EDX, confirmed that the compound is calcium peroxide nanoparticles with an average nano size of 31
... Show MoreIn this work we used the environmentally friendly method to prepared ZrO2 nanoparticles utilizing the extract of Thyms plant In basic medium and at pH 12, the ZrO2 NPs was characterized by different techniques such as FTIR, ultraviolet visible, Atomic force microscope, Scanning Electron Microscopy, X-ray diffraction and Energy dispersive X-ray. The average crystalline size was calculated using the Debye Scherres equation in value 7.65 nm. Atomic force microscope results showed the size values for ZrO2 NPs were 45.11nm, and there are several distortions due to the presence of some large sizes. Atomic force microscope results showed the typical size values for ZrO2 NPs were 45.11 nm, and there are several distortions due to the presence of so
... Show More
