The aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).
According to the importance of the conveyor systems in various industrial and service lines, it is very desirable to make these systems as efficient as possible in their work. In this paper, the speed of a conveyor belt (which is in our study a part of an integrated training robotic system) is controlled using one of the artificial intelligence methods, which is the Artificial Neural Network (ANN). A visions sensor will be responsible for gathering information about the status of the conveyor belt and parts over it, where, according to this information, an intelligent decision about the belt speed will be taken by the ANN controller. ANN will control the alteration in speed in a way that gives the optimized energy efficiency through
... Show MoreThe present study reports the effect of temperature and liquid hourly space velocity (LHSV) on the cumene cracking reaction rate and selectivity by using a laboratory continuous flow unit with fixed bed reactor operating at atmospheric pressure. The prepared HX zeolite was made from Iraqi kaolin with good crystallinity .The activity and selectivity of prepared HX-zeolite was compared with standard HY zeolite and HX zeolite catalysts in the temperature range of 673-823K and LHSV of 0.7-2.5 h-1 . It was found that the cumene conversion increases with increasing temperature and decreasing LHSV at 823K and LHSV of 0.7 h-1 the conversions 65.32, 42.88 and 59.42 mol% for HY, HX and prepared HX catalysts respectively and at LHSV of 2.5 h-1 and th
... Show MoreMagnetic Abrasive Finishing (MAF) is an advanced finishing method, which improves the quality of surfaces and performance of the products. The finishing technology for flat surfaces by MAF method is very economical in manufacturing fields an electromagnetic inductor was designed and manufactured for flat surface finishing formed in vertical milling machine. Magnetic abrasive powder was also produced under controlled condition. There are various parameters, such as the coil current, working gap, the volume of powder portion and feed rate, that are known to have a large impact on surface quality. This paper describes how Taguchi design of experiments is applied to find out important parameters influencing the surface quality generated during
... Show MoreThe paper aims to measure and analysis the impact Public Spending on Iraq economy (Kaldor Variables).
(variables of the magic square Kaldor) and them in after 2003.
The paper adopted econometric Methods to test the stationarity of the Variables under consideration. For the period (2005-2016) by using multiple regression and estimation the Impulse response function (IRF), by adopting Eviews 10 program.
The results of Impulse response function for the following five-years after the period under consideration reflexes that public expenditure (PEX) was fluctuating between positive and negative in all the variables of the research and this shows the fragility of the performance of fiscal policy in Iraq.
T
... Show More