Preferred Language
Articles
/
xxfvQo8BVTCNdQwCeGfO
ON THE GREEDY RADIAL BASIS FUNCTION NEURAL NETWORKS FOR APPROXIMATION MULTIDIMENSIONAL FUNCTIONS
...Show More Authors

The aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Oct 01 2021
Journal Name
Nature Communications
CD177 modulates the function and homeostasis of tumor-infiltrating regulatory T cells
...Show More Authors
Abstract<p>Regulatory T (Treg) cells are one of the major immunosuppressive cell types in cancer and a potential target for immunotherapy, but targeting tumor-infiltrating (TI) Treg cells has been challenging. Here, using single-cell RNA sequencing of immune cells from renal clear cell carcinoma (ccRCC) patients, we identify two distinct transcriptional fates for TI Treg cells, Fate-1 and Fate-2. The Fate-1 signature is associated with a poorer prognosis in ccRCC and several other solid cancers. CD177, a cell surface protein normally expressed on neutrophil, is specifically expressed on Fate-1 TI Treg cells in several solid cancer types, but not on other TI or peripheral Treg cells. Mechanistically, blocking CD</p> ... Show More
View Publication
Scopus (75)
Crossref (79)
Scopus Clarivate Crossref
Publication Date
Sun Jun 05 2011
Journal Name
Baghdad Science Journal
Some Probability Characteristics Functions of the Solution of a Stochastic Non-Linear Fredholm Integral Equation of the Second Kind
...Show More Authors

In this research, some probability characteristics functions (probability density, characteristic, correlation and spectral density) are derived depending upon the smallest variance of the exact solution of supposing stochastic non-linear Fredholm integral equation of the second kind found by Adomian decomposition method (A.D.M)

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jul 01 2018
Journal Name
Journal Of Network And Computer Applications
L-CAQ: Joint link-oriented channel-availability and channel-quality based channel selection for mobile cognitive radio networks
...Show More Authors

View Publication
Scopus (17)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
An Observation and Analysis the role of Convolutional Neural Network towards Lung Cancer Prediction
...Show More Authors

Lung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (3)
Scopus Crossref
Publication Date
Tue Jun 01 2010
Journal Name
Journal Of Economics And Administrative Sciences
Bayes Estimator as a Function of Some Classical Estimator
...Show More Authors

Maximum likelihood estimation method, uniformly minimum variance unbiased estimation method and minimum mean square error estimation, as classical estimation procedures, are frequently used for parameter estimation in statistics, which assuming the parameter is constant , while Bayes method assuming the parameter is random variable and hence the Bayes estimator is an estimator which minimize the Bayes risk for each value the random observable and for square error lose function the Bayes estimator is the posterior mean. It is well known that the Bayesian estimation is hardly used as a parameter estimation technique due to some difficulties to finding a prior distribution.

The interest of this paper is that

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue May 01 2018
Journal Name
Journal Of Physics: Conference Series
Theoretical Calculation of the Electron Transport Parameters and Energy Distribution Function for CF3I with noble gases mixtures using Monte Carlo simulation program
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Dec 30 2007
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of Fractional Hold-Up in RDC Column Using Artificial Neural Network
...Show More Authors

In the literature, several correlations have been proposed for hold-up prediction in rotating disk contactor. However,
these correlations fail to predict hold-up over wide range of conditions. Based on a databank of around 611
measurements collected from the open literature, a correlation for hold up was derived using Artificial Neiral Network
(ANN) modeling. The dispersed phase hold up was found to be a function of six parameters: N, vc , vd , Dr , c d m / m ,
s . Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 6.52%
and Standard Deviation (SD) 9.21%. A comparison with selected correlations in the literature showed that the
developed ANN correlation noticeably

... Show More
View Publication Preview PDF
Publication Date
Sat Apr 01 2023
Journal Name
Baghdad Science Journal
Some K-Banhatti Polynomials of First Dominating David Derived Networks
...Show More Authors

Chemical compounds, characteristics, and molecular structures are inevitably connected. Topological indices are numerical values connected with chemical molecular graphs that contribute to understanding a chemical compounds physical qualities, chemical reactivity, and biological activity. In this study, we have obtained some topological properties of the first dominating David derived (DDD) networks and computed several K-Banhatti polynomials of the first type of DDD.

View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Fri Dec 01 2017
Journal Name
International Journal Of Chemtech Research
The Effect of Ginger Plant (Zingiber officinale) Aqueous Extract on Function and Histological Structure of Kidney in Mice Treated with Carbon Tetrachloride
...Show More Authors

The percent work was designed to determine the effect of ginger plant aqueous extract on function and histological structure of kidney in mice treated with carbon tetrachloride (CCl4). Ginger plant caused a protective effect against CCl4 induced kidney damage and improved the kidney weight and biochemical parameters including urea, uric acid and creatinine. The ginger plant has a protective effect against injury in the kidney of mice treated with CCL4, because the ginger plant protects the tissues of kidney from toxic effect of CCL4. The kidney of CCL4 treated mice showed many histological alterations in the kidney included: atrophy, vascular degeneration and hemorrhage, death cell, degeneration of epithelial cells, destruction of basement

... Show More
Publication Date
Fri Jul 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Comparison some of methods wavelet estimation for non parametric regression function with missing response variable at random
...Show More Authors

Abstract

 The problem of missing data represents a major obstacle before researchers in the process of data analysis in different fields since , this problem is a recurrent one in all fields of study including social , medical , astronomical and clinical experiments .

The presence of such a problem within the data to be studied may influence negatively on the analysis and it may lead to misleading conclusions , together with the fact that these conclusions that result from a great bias caused by that problem in spite of the efficiency of wavelet methods but they are also affected by the missing of data , in addition to the impact of the problem of miss of accuracy estimation

... Show More
View Publication Preview PDF
Crossref