Preferred Language
Articles
/
xxfvQo8BVTCNdQwCeGfO
ON THE GREEDY RADIAL BASIS FUNCTION NEURAL NETWORKS FOR APPROXIMATION MULTIDIMENSIONAL FUNCTIONS
...Show More Authors

The aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Sep 11 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Automated Reconstruction and Manual Curation of Amino Acid Biosynthesis Pathways in Sulfolobus solfataricus P2
...Show More Authors

The efficient sequencing techniques have significantly increased the number of genomes that are now available, including the Crenarchaeon Sulfolobus solfataricus P2 genome. The genome-scale metabolic pathways in Sulfolobus solfataricus P2 were predicted by implementing the “Pathway Tools” software using MetaCyc database as reference knowledge base. A Pathway/Genome Data Base (PGDB) specific for Sulfolobus solfataricus P2 was created. A curation approach was carried out regarding all the amino acids biosynthetic pathways. Experimental literatures as well as homology-, orthology- and context-based protein function prediction methods were followed for the curation process. The “PathoLogic”

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Aug 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
مقارنة مقدرات بيز لدالة المعولية لتوزيع باريتو من النوع الاول باستعمال دوال معلوماتية مضاعفة مختلفة
...Show More Authors

The comparison of double informative priors which are assumed for the reliability function of Pareto type I distribution. To estimate the reliability function of Pareto type I distribution by using Bayes estimation, will be  used two different kind of information in the Bayes estimation; two different priors have been selected for the parameter of Pareto  type I distribution . Assuming distribution of three double prior’s chi- gamma squared distribution, gamma - erlang distribution, and erlang- exponential distribution as double priors. The results of the derivaties of these estimators under the squared error loss function with two different double priors. Using the simulation technique, to compare the performance for

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
طرائق جديدة لحل مشاكل البرمجة الخطية الضبابية المتماثلة
...Show More Authors

Several authors have used ranking function for solving linear programming problem. In This paper is proposed two ranking function for solving fuzzy linear programming and compare these two approach with trapezoidal fuzzy number .The proposed approach is very easy to understand and it can applicable, also the data were chosen from general company distribution of dairy (Canon company) was proposed test approach and compare; This paper prove that the second proposed approach is better to give the results and satisfy the minimal cost using Q.M. Software

 

View Publication Preview PDF
Crossref