This research aims to solve the problem of selection using clustering algorithm, in this research optimal portfolio is formation using the single index model, and the real data are consisting from the stocks Iraqi Stock Exchange in the period 1/1/2007 to 31/12/2019. because the data series have missing values ,we used the two-stage missing value compensation method, the knowledge gap was inability the portfolio models to reduce The estimation error , inaccuracy of the cut-off rate and the Treynor ratio combine stocks into the portfolio that caused to decline in their performance, all these problems required employing clustering technic to data mining and regrouping it within clusters with similar characteristics to outperform the portfolio building models to diagnose those stock that Causing a decrease in portfolio performance ,our conclusion is Clustering technic outperforms the diagnosis of those stocks that meet the condition of opting into the optimal portfolio according to common considerations, but after excluding them, the performance of optimal portfolio is rises
In this paper a hybrid system was designed for securing transformed or stored text messages(Arabic and english) by embedding the message in a colored image as a cover file depending on LSB (Least Significant Bit) algorithm in a dispersed way and employing Hill data encryption algorithm for encrypt message before being hidden, A key of 3x3 was used for encryption with inverse for decryption, The system scores a good result for PSNR rate ( 75-86) that differentiates according to length of message and image resolution.
In this paper a hybrid system was designed for securing transformed or stored text messages(Arabic and english) by embedding the message in a colored image as a cover file depending on LSB (Least Significant Bit) algorithm in a dispersed way and employing Hill data encryption algorithm for encrypt message before being hidden, A key of 3x3 was used for encryption with inverse for decryption, The system scores a good result for PSNR rate ( 75-86) that differentiates according to length of message and image resolution
The evolution of the Internet of things (IoT) led to connect billions of heterogeneous physical devices together to improve the quality of human life by collecting data from their environment. However, there is a need to store huge data in big storage and high computational capabilities. Cloud computing can be used to store big data. The data of IoT devices is transferred using two types of protocols: Message Queuing Telemetry Transport (MQTT) and Hypertext Transfer Protocol (HTTP). This paper aims to make a high performance and more reliable system through efficient use of resources. Thus, load balancing in cloud computing is used to dynamically distribute the workload across nodes to avoid overloading any individual r
... Show MoreThis paper deals with proposing new lifting scheme (HYBRID Algorithm) that is capable of preventing images and documents which are fraud through decomposing there in to the real colors value arrays (red, blue and green) to create retrieval keys for its properties and store it in the database and then check the document originality by retrieve the query image or document through the decomposition described above and compare the predicted color values (retrieval keys) of the query document with those stored in the database. The proposed algorithm has been developed from the two known lifting schemes (Haar and D4) by merging them to find out HYBRID lifting scheme. The validity and accuracy of the proposed algorithm have been ev
... Show MoreMeerkat Clan Algorithm (MCA) is a nature-based metaheuristic algorithm which imitates the intelligent behavior of the meerkat animal. This paper presents an improvement on the MCA based on a chaotic map and crossover strategy (MCA-CC). These two strategies increase the diversification and intensification of the proposed algorithm and boost the searching ability to find more quality solutions. The 0-1 knapsack problem was solved by the basic MCA and the improved version of this algorithm (MCA-CC). The performance of these algorithms was tested on low and high dimensional problems. The experimental results demonstrate that the proposed algorithm had overcome the basic algorithm in terms of solution quality, speed a
... Show MoreIn modern years, internet and computers were used by many nations all overhead the world in different domains. So the number of Intruders is growing day-by-day posing a critical problem in recognizing among normal and abnormal manner of users in the network. Researchers have discussed the security concerns from different perspectives. Network Intrusion detection system which essentially analyzes, predicts the network traffic and the actions of users, then these behaviors will be examined either anomaly or normal manner. This paper suggested Deep analyzing system of NIDS to construct network intrusion detection system and detecting the type of intrusions in traditional network. The performance of the proposed system was evaluated by using
... Show MoreIn this paper, we present a Branch and Bound (B&B) algorithm of scheduling (n) jobs on a single machine to minimize the sum total completion time, total tardiness, total earliness, number of tardy jobs and total late work with unequal release dates. We proposed six heuristic methods for account upper bound. Also to obtain lower bound (LB) to this problem we modified a (LB) select from literature, with (Moore algorithm and Lawler's algorithm). And some dominance rules were suggested. Also, two special cases were derived. Computational experience showed the proposed (B&B) algorithm was effective in solving problems with up to (16) jobs, also the upper bounds and the lower bound were effective in restr
... Show MoreThis paper uses Artificial Intelligence (AI) based algorithm analysis to classify breast cancer Deoxyribonucleic (DNA). Main idea is to focus on application of machine and deep learning techniques. Furthermore, a genetic algorithm is used to diagnose gene expression to reduce the number of misclassified cancers. After patients' genetic data are entered, processing operations that require filling the missing values using different techniques are used. The best data for the classification process are chosen by combining each technique using the genetic algorithm and comparing them in terms of accuracy.
Abstract: Data mining is become very important at the present time, especially with the increase in the area of information it's became huge, so it was necessary to use data mining to contain them and using them, one of the data mining techniques are association rules here using the Pattern Growth method kind enhancer for the apriori. The pattern growth method depends on fp-tree structure, this paper presents modify of fp-tree algorithm called HFMFFP-Growth by divided dataset and for each part take most frequent item in fp-tree so final nodes for conditional tree less than the original fp-tree. And less memory space and time.
In the current research work, a method to reduce the color levels of the pixels within digital images was proposed. The recent strategy was based on self organization map neural network method (SOM). The efficiency of recent method was compared with the well known logarithmic methods like Floyd-Steinberg (Halftone) dithering and Octtrees (Quadtrees) methods. Experimental results have shown that by adjusting the sampling factor can produce higher-quality images with no much longer run times, or some better quality with shorter running times than existing methods. This observation refutes the repeated neural networks is necessarily slow but have best results. The generated quantization map can be exploited for color image compression, clas
... Show More