Recently, Image enhancement techniques can be represented as one of the most significant topics in the field of digital image processing. The basic problem in the enhancement method is how to remove noise or improve digital image details. In the current research a method for digital image de-noising and its detail sharpening/highlighted was proposed. The proposed approach uses fuzzy logic technique to process each pixel inside entire image, and then take the decision if it is noisy or need more processing for highlighting. This issue is performed by examining the degree of association with neighboring elements based on fuzzy algorithm. The proposed de-noising approach was evaluated by some standard images after corrupting them with impulse noise (salt and pepper) in different power levels. The obtained results are encouraging to some extent. Also this algorithm was improved sharpen the details as well as the results were also encouraging.
Embedding an identifying data into digital media such as video, audio or image is known as digital watermarking. In this paper, a non-blind watermarking algorithm based on Berkeley Wavelet Transform is proposed. Firstly, the embedded image is scrambled by using Arnold transform for higher security, and then the embedding process is applied in transform domain of the host image. The experimental results show that this algorithm is invisible and has good robustness for some common image processing operations.
The Digital Elevation Model (DEM) has been known as a quantitative description of the surface of the Earth, which provides essential information about the terrain. DEMs are significant information sources for a number of practical applications that need surface elevation data. The open-source DEM datasets, such as the Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER), the Shuttle Radar Topography Mission (SRTM), and the Advanced Land Observing Satellite (ALOS) usually have approximately low accuracy and coarser resolution. The errors in many datasets of DEMs have already been generally examined for their importance, where their quality could be affected within different aspects, including the types of sensors, algor
... Show MoreMerging biometrics with cryptography has become more familiar and a great scientific field was born for researchers. Biometrics adds distinctive property to the security systems, due biometrics is unique and individual features for every person. In this study, a new method is presented for ciphering data based on fingerprint features. This research is done by addressing plaintext message based on positions of extracted minutiae from fingerprint into a generated random text file regardless the size of data. The proposed method can be explained in three scenarios. In the first scenario the message was used inside random text directly at positions of minutiae in the second scenario the message was encrypted with a choosen word before ciphering
... Show MoreIn this paper an algorithm for Steganography using DCT for cover image and DWT for hidden image with an embedding order key is proposed. For more security and complexity the cover image convert from RGB to YIQ, Y plane is used and divided into four equally parts and then converted to DCT domain. The four coefficient of the DWT of the hidden image are embedded into each part of cover DCT, the embedding order based on the order key of which is stored with cover in a database table in both the sender and receiver sender. Experimental results show that the proposed algorithm gets successful hiding information into the cover image. We use Microsoft Office Access 2003 database as DBMS, the hiding, extracting algo
... Show MoreLike the digital watermark, which has been highlighted in previous studies, the quantum watermark aims to protect the copyright of any image and to validate its ownership using visible or invisible logos embedded in the cover image. In this paper, we propose a method to include an image logo in a cover image based on quantum fields, where a certain amount of texture is encapsulated to encode the logo image before it is included in the cover image. The method also involves transforming wavelets such as Haar base transformation and geometric transformation. These combination methods achieve a high degree of security and robustness for watermarking technology. The digital results obtained from the experiment show that the values of Peak Sig
... Show MoreIn this paper, an algorithm through which we can embed more data than the
regular methods under spatial domain is introduced. We compressed the secret data
using Huffman coding and then this compressed data is embedded using laplacian
sharpening method.
We used Laplace filters to determine the effective hiding places, then based on
threshold value we found the places with the highest values acquired from these filters
for embedding the watermark. In this work our aim is increasing the capacity of
information which is to be embedded by using Huffman code and at the same time
increasing the security of the algorithm by hiding data in the places that have highest
values of edges and less noticeable.
The perform
In this paper, an adaptive medical image watermarking technique is proposed based on wavelet transform and properties of human visual system in order to maintain the authentication of medical images. Watermark embedding process is carried out by transforming the medical image into wavelet domain and then adaptive thresholding is computed to determine the suitable locations to hide the watermark in the image coefficients. The watermark data is embedded in the coefficients that are less sensitive into the human visual system in order to achieve the fidelity of medical image. Experimental results show that the degradation by embedding the watermark is too small to be visualized. Also, the proposed adaptive watermarking technique can preserv
... Show MoreIn this research a proposed technique is used to enhance the frame difference technique performance for extracting moving objects in video file. One of the most effective factors in performance dropping is noise existence, which may cause incorrect moving objects identification. Therefore it was necessary to find a way to diminish this noise effect. Traditional Average and Median spatial filters can be used to handle such situations. But here in this work the focus is on utilizing spectral domain through using Fourier and Wavelet transformations in order to decrease this noise effect. Experiments and statistical features (Entropy, Standard deviation) proved that these transformations can stand to overcome such problems in an elegant way.
... Show More