Novel Approach for Fabricating Transparent and Conducting SWCNTs/ITO Thin Films for Optoelectronic Applications
...Show More Authors
CdS and CdS:Sn thin films were successfully deposited on glass
substrates by spray pyrolysis method. The films were grown at
substrate temperatures 300 C°. The effects of Sn concentration on the
structural and optical properties were studied.
The XRD profiles showed that the films are polycrystalline with
hexagonal structure grown preferentially along the (002) axis. The
optical studies exhibit direct allowed transition. Energy band gap
vary from 3.2 to 2.7 eV.
Thin films samples of Bismuth sulfide Bi2S3 had deposited on
glass substrate using thermal evaporation method by chemical
method under vacuum of 10-5 Toor. XRD and AFM were used to
check the structure and morphology of the Bi2S3 thin films. The
results showed that the films with law thickness <700 nm were free
from any diffraction peaks refer to amorphous structure while films
with thickness≥700 nm was polycrystalline. The roughness decreases
while average grain size increases with the increase of thickness. The
A.C conductivity as function of frequency had studied in the
frequency range (50 to 5x106 Hz). The dielectric constant,
polarizability showed significant dependence upon the variation of
thic
In this research, the structural and optical measurements were made on the Zinc oxide (ZnO) films prepared by two methods once by using chemical spray pyrolysis technique, and another by using thermal evaporation technique before and after irradiation by Gamma –Ray (γ – rays) from source type (Cs 137) with an energy (0.611)MeV as a function of gamma dose (0.15,0.3 and 0.45) Gy. The thickness of all films prepared by two method was about (300 ± 50) nm. XRD is used to characterize the structural properties, the results demonstrated that all samples prepared by two method before and after irradiation have polycrystalline structure with a preferred orientation (002).Also it showed that the structural properties are weakly
... Show MoreThe electronic properties and Hall effect of thin amorphous Si1-xGex:H films of thickness (350 nm) have been studied such as dc conductivity, activation energy, Hall coefficient under magnetic field (0.257 Tesla) for measuring carrier density of electrons and holes and Hall mobility as a function of germanium content (x = 0–1), deposition temperature (303-503) K and dopant concentration for Al and As in the range (0-3.5)%. The composition of the alloys and films were determined by using energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS).
This study showed that dc conductivity of a-Si1-xGex:H thin films is found to increase with increasing Ge content and dopant concentration, whereas conductivity activati
In this research the electrical conductivity and optical measurements were made on the Iron Oxide (Fe2O3) films prepared by chemical spray pyrolysis method as a function of thickness (250, 350, 450, and 550)  20 nm. The measurements of electrical conductivity (σ), activation energies (Ea1, Ea2),and optical constant such as absorption coefficient, refractive index, extinction coefficient and the dielectric constants for the wavelengths in the range (300-900) nm have been investigated on (Fe2O3) thin films as a function of thickness. All films contain two types of transport mechanisms, and the electrical conductivity (σ) increases whereas the activation energy (Ea) would decrease as the films thi
... Show MoreIn this paper the effect of thermal annealing on the structural and optical properties of Antimony Selenide (Sb2Se3) is investigated. Sb2Se3 powder is evaporated on clean amorphous glass substrates at room temperature under high vacuum pressure (4.5×10-6 mbar) to form thin films. The structural investigation was done with the aid of X-ray diffraction (XRD) and atomic force microscopy (AFM). The amorphous to polycrystalline transformation of these thin films was shown by X-ray diffraction analysis after thermal annealing. These films' morphology is explained. (UV-Vis ) spectra in ranges from 300 to 1100 nm was used to examine the optical properties of the films .The absorption coefficient and optical energy gap of the investigated films are
... Show MoreA nanocrystalline thin films of PbS with different thickness (400, 600)nm have been prepared successfully by chemical bath deposition technique on glass and Si substrates. The structure and morphology of these films were studied by X-ray diffraction and atomic force microscope. It shows that the structure is polycrystalline and the average crystallite size has been measured. The electrical properties of these films have been studied, it was observed that D.C conductivity at room temperature increases with the increase of thickness, From Hall measurements the conductivity for all samples of PbS films is p-type. Carrier's concentration, mobility and drift velocity increases with increasing of thickness. Also p-PbS/n-Si heterojunction has been
... Show MoreCopper tin sulfide (Cu2SnS3) thin films have been grown on glass
substrate with different thicknesses (500, 750 and 1000) nm by flash
thermal evaporation method after prepare its alloy from their
elements with high purity. The as-deposited films were annealed at
473 K for 1h. Compositional analysis was done using Energy
dispersive spectroscopy (EDS). The microstructure of CTS powder
examined by SEM and found that the large crystal grains are shown
clearly in images. XRD investigation revealed that the alloy was
polycrystalline nature and has cubic structure with preferred
orientation along (111) plane, while as deposited films of different
thickness have amorphous structure and converted to polycrystalline
Thin films of BhSe3 have being deposited on glass substrates of
about 80 - 172 ± 14 nm thickness from an aqueous solution bath at temperature 293 K for period 0.5 to 6.0 hours using alchemical bath deposition method .
The films are characterized by X-ray diffraction, X-ray
florescent techniques and optical transmittance spectra measurements in the rang 350 - 400 nm at 293 K. And shows that as deposited films are amorphous and a transition to polycrystalline state has taken place after annealing them at 373 K, for 30 minutes, But they will be dan1aged
... Show More