The government of Iraq states that despite the massive amounts invested in the power generating sector, the country has been plagued by power outages for more than three decades; One of the most common sources of the problem and significant impact on the waste of public funds in contractual processes. The Ministry of Planning issued the sectorial
specialized standard bidding documents (SSBD) of Design, Supply, and Installation of the Electromechanical Works (DSIoEW), which is primarily designed to support the Ministry of Electricity (MoE) by developing economic projects to improve the contractual process that led to raisings Iraqi electricity generation field. The research evaluates the impact of
applying the SSBD-DSIoEW for
An investigation was provided in this work for the host range of brown soft scale Coccus hesperidum Linnaeus in Baghdad Province. Five plant species were found infected by this insect, three of these species, Citrusaurantium L. (Rutaceae); Nerium oleander L. (Apocynaceae); Ficuscarica L. (Moraceae) reported earlier, and the remaining two, Dahlia pinnata Cav. (Asteraceae) and Myrtuscommunis L. (Myrtaceae) are recordedhere for the first time as host plants for this pest.
The present study is concern with the interaction between the naidid worms diversity and the species of aquatic plant within which the worms found . For this purpose, two species of aquatic plant were used, Ceratophyllum demersum and Eichhornia crassipes. 12 samples of aquatic plants were collected , as one sample monthly for a period from September 2012 to September 2013 from different site on Tigris river within Baghdad City. From C. demersum, 1428 individuals, were sorted during the study period, related to 17 species. 12 species of subfamily Naidinae which are Chaetogaster limnaei , C. diastrophus , Ophidonais serpentine , Dero ( Dero) digitata. , D.(D.) evelinae , Nais pseudobtosa , N.simplex, N.stolci , N.Paradalis , N.elingiu
... Show MoreIn this study, 191 specimens of insects that infect species of the Fabaceae family, including:
In this study, sawdust as a cheap method and abundant raw material was utilized to produce active carbon (SDAC). Physiochemical activation was utilized where potassium hydroxide used as a chemical activating agent and carbon dioxide was used as a physical activating agent. Taguchi method of experimental design was used to find the optimum conditions of SDAC production. The produced SDAC was characterized using SEM to investigate surface morphology and BET to estimate the specific surface area. SDAC was used in aqueous lead ions adsorption. Adsorption process was modeled statistically and represented by an empirical model. The highest specific surface area of SDAC was 688.3 m2/gm. Langmuir and Freundlich isotherms were used to
... Show MoreThis study aimed to assess the efficiency of Nerium oleander in removing three different metals (Cd, Cu, and Ni) from simulated wastewater using horizontal subsurface flow constructed wetland (HSSF-CW) system. The HSSF-CW pilot scale was operated at two hydraulic retention times (HRTs) of 4 and 7 days, filled with a substrate layer of sand and gravel. The results indicated that the HSSF-CW had high removal efficiency of Cd and Cu. A higher HRT (7 days) resulted in greater removal efficiency reaching up to (99.3% Cd, 99.5% Cu, 86.3% Ni) compared to 4 days. The substrate played a significant role in removal of metals due to adsorption and precipitation. The N. oleander plant also showed a good tolerance to the uptake of Cd, Cu, and Ni ions fr
... Show MoreIndustrial wastewater containing nickel, lead, and copper can be produced by many industries. The reverse osmosis (RO) membrane technologies are very efficient for the treatment of industrial wastewater containing nickel, lead, and copper ions to reduce water consumption and preserving the environment. Synthetic industrial wastewater samples containing Ni(II), Pb(II), and Cu(II) ions at various concentrations (50 to 200 ppm), pressures (1 to 4 bar), temperatures (10 to 40 oC), pH (2 to 5.5), and flow rates (10 to 40 L/hr), were prepared and subjected to treatment by RO system in the laboratory. The results showed that high removal efficiency of the heavy metals could be achieved by RO process (98.5%, 97.5% and 96% for Ni(II),
... Show MoreThis study aimed to assess the efficiency of Nerium oleander in removing three different metals (Cd, Cu, and Ni) from simulated wastewater using horizontal subsurface flow constructed wetland (HSSF-CW) system. The HSSF-CW pilot scale was operated at two hydraulic retention times (HRTs) of 4 and 7 days, filled with a substrate layer of sand and gravel. The results indicated that the HSSF-CW had high removal efficiency of Cd and Cu. A higher HRT (7 days) resulted in greater removal efficiency reaching up to (99.3% Cd, 99.5% Cu, 86.3% Ni) compared to 4 days. The substrate played a significant role in removal of metals due to adsorption and precipitation. The N. oleander plant also showed a good tolerance to the uptake of Cd, Cu, and Ni ions fr
... Show MoreThis paper aims to study the biosorption for removal of lead, cadmium, copper and arsenic ions using algae as a biosorbent. A series of experiments were carried out to obtain the breakthrough data in a fluidized bed reactor. The minimum fluidization velocities of beds were found to be 2.27 and 3.64 mm/s for mish sizes of 0.4-0.6 and 0.6-1 mm diameters, respectively. An ideal plug flow model has been adopted to characterize the fluidized bed reactor. This model has been solved numerically using MATLAB version 6.5. The results showed a well fitting with the experimental data. Different operating conditions were varied: static bed height, superficial velocity and particle diameter. The breakthrough curves were plotted for each metal. Pb2+ s
... Show More