The accumulation of construction and demolition waste is one of the major problems in modern construction. Hence, this research investigates the use of waste brick in concrete. Seven different concrete mixes were investigated in this study: a control concrete mix, three mixes with volumetric replacement (10, 20, and 30)% of natural aggregate with brick aggregate, and two mixes with the addition of nano brick powder at a percentage level of 5– 10% by weight of cementitious materials. And the last one was mixed with 10% nano brick and 10% coarse brick aggregate. The experimental results for the additive of nano brick powder showed an enhancement in mechanical properties (compressive, flexural, and tensile strength) compared to the control mix for all ages, while the mixes with 10% coarse brick replacement also showed a slight improvement in the mechanical properties up to 5.33%, 2.79%, and 2.38% for compressive, splitting tensile, and flexural strength, respectively, at 28 days. The nano particles modified the mechanical properties of the CBA concrete when mixed with 10% nano brick and 10% coarse brick aggregate, up to 11.54%, 8.56%, and 3.3% for compressive, flexural, and tensile strength, respectively, at 150 days.
Polymers have the ability to extract water after they have been added to the mortar or concrete mixture. They provide the absorbed water during hydration functioning as internal water source. Absorption polymers can absorb up to hundred times of their own weight of pure water.This research deals with the use of water absorption polymer balls in concrete and study the volumetric change of these mixes and compared the results with reference mix (without polymers). Samples were cured both in air and in water for the mixes to compare results which show that samples in air behave for expansion while sample in water acted for shrinkage.
AAA AL-NUAIMY, MH ABDLL-ABASS, Iraqi Journal of Agricultural Sciences, 2007
Vitrifications process one of the important methods to immobilize nuclear waste. In this research nuclear waste (Strontium Oxides) with molecular weight (5%) was immobilized by vitrification methods in two types of borosilicate glass (c-type) which are glass and glass-ceramics. To investigate the physical, chemical and mechanical properties of glass and glass-ceramic after immobilize nuclear waste these samples irradiated by gamma ray radiation. Co-60 was used as gamma a irradiation with dose rate 0.38 kGy/hr for different period of time. It’s found that gamma radiation affected the glass and glass-ceramic properties. From phase analysis by the x-ray diffraction for glass-ceramic samples proved that at doses 343kGy change the cry
... Show MoreThis thesis aims to study the effect of addition polymer materials on mechanical properties of self-compacting concrete, and also to assess the influence of petroleum products (kerosene and gas oil) on mechanical properties of polymer modified self-compacting concrete (PMSCC) after different exposure periods of (30 ,60 ,90 ,and 180 days).
Two type of curing are used; 28 days in water for SCC and 2 days in water followed 26 days in air for PMSCC.
The test results show that the PMSCC (15% P/C ratio) which is exposed to oil products recorded a lower deterioration in compressive strength's values than reference concrete. The percentages of reduction in compressive strength values of PMSCC (15% P/C ratio) was
... Show MoreExperts have given much attention on the use of waste in asphalt paving because of its significance from a sustainability perspective. This paper evaluated the performance properties of asphalt concrete mixes modified with Crumb Rubber (CR) as a partial replacement for two grade sizes of fine aggregate (2.36, and 0.3 mm) at six replacement rates: 0%, 2%, 4%, 6%, 8%, and 10% by weight. Asphalt concrete mixes were prepared at their Optimum Asphalt Content (OAC) and then tested for their engineering properties. Marshall properties, fatigue, rutting, ideal CT index test, Scanning Electron Microscopy (SEM), and Energy-Dispersive X-ray (EDX) spectroscopy were deployed to examine the crystalline structure and elemental composition of the C
... Show MoreThis research presents an experimental investigation on the influence of metakaolin replacement percentage upon some properties of different concrete types. Three types of concrete were adopted (self- compacted concrete, high performance concrete and reactive powder concrete) all of high sulphate (SO3) percentage from the fine aggregate weight, 0.75%. Three percentages of metakaolin replacement were selected to be studied (5, 7 and 10) %. Three types of concrete properties (compressive, flexural and splitting tensile strength) were adopted to achieve better understanding for the influence of adding metakaolin.. The output results indicated that the percentage of metakaolin had a different level of positive effect on the compressive strength
... Show MoreThe development of new building materials, able of absorbing more energy is an active research area. Engineering Cementitious Composite (ECC) is a class of super-elastic fiberreinforced cement composites characterized by high ductility and tight crack width control. The use of bendable concrete produced from Portland Limestone Cement (PLC) may lead to an interest in new concrete mixes. Impact results of bendable concrete reinforced with steel mesh and polymer fibers will provide data for the use of this concrete in areas subject to impact loading. The experimental part consisted of compressive strength and impact resistance tests along with a result comparison with unreinforced concrete. Concrete samples, with dimensions of 100×
... Show MoreThe most important environmental constraints at the present time
is the accumulation of glass waste (transparent glass bottles). A lot of
experiments and research have been made on waste and recycling
glass to get use it as much as possible. This research using recycling
of locally waste colorless glass to turn them into raw materials as
alternative of certain percentages of cement to save the environment
from glass waste and reduce some of the disadvantages of cement
with conserving the mechanical and physical properties of concrete
made. A set of required samples were prepared for mechanical test
with different weight percentage of waste glass (2%, 4%, 5%, 6%,
8%, 10%, 15%, 20% and 25%). American standard