Structure type and disorder have become important questions in catalyst design, with the most active catalysts often noted to be “disordered” or “amorphous” in nature. To quantify the effects of disorder and structure type systematically, a test set of manganese(III,IV) oxides was developed and their reactivity as oxidants and catalysts tested against three substrates: methylene blue, hydrogen peroxide, and water. We find that disorder destabilizes the materialsthermodynamically, making them stronger chemical oxidantsbut not necessarily better catalysts. For the disproportionation of H2O2 and the oxidative decomposition of methylene blue, MnOx-mediated direct oxidation competes with catalytically mediated oxidation, making the most disordered materials the worst catalysts, whereas for water oxidation, the most disordered materials and the strongest chemical oxidants are also the best catalysts. Even though the manganese(III,IV) oxide materials were able to oxidize both methylene blue and peroxides directly,the same materials were able to act as catalysts for the oxidation of methylene blue in the presence of peroxides. This impliesthat effects of electron transfer time scales are important and strongly affected by structure type and disorder. This is discussed In the context of catalyst design.
The goal of this study was to investigate the protein peroxidation role by measuring serum levels of advanced oxidation protein products (AOPP) in type 2 diabetic patients with or without retinopathy and comparing them to controls to see if circulating AOPP levels can be used as a detection biomarker for DR. And see which of the two widely used antidiabetic treatment groups had the most impact on this oxidative stress marker. The groups were divided into two subgroups: 1) 70 type 2 diabetic patients (36 male, 34 female), 35 with diabetic retinopathy (DR) and 35 with no evidence of DR, and 2) non-diabetic controls (11 male, 9 female) were chosen from Ibn AL-Haitham Hospital for Ophthalmology and a Specialized Center for Endocrinology and Dia
... Show MoreThe recent emergence of sophisticated Large Language Models (LLMs) such as GPT-4, Bard, and Bing has revolutionized the domain of scientific inquiry, particularly in the realm of large pre-trained vision-language models. This pivotal transformation is driving new frontiers in various fields, including image processing and digital media verification. In the heart of this evolution, our research focuses on the rapidly growing area of image authenticity verification, a field gaining immense relevance in the digital era. The study is specifically geared towards addressing the emerging challenge of distinguishing between authentic images and deep fakes – a task that has become critically important in a world increasingly reliant on digital med
... Show MoreA simple, rapid and sensitive spectrophotometirc method for the determination of trace amounts of promethazine hydrochloride in the aqueous solution is described. The method is based on the complexation of promethazine hydrochloride with In (III) in the presence of sodium hydroxide to form an soluble product with maximum absorption at 304nm. Beer’s law is obeyed over the concentration range of (2- 20μg/ml) with molar absorptivity of (1.92× 103 L.mol-1 .cm -1 ). The optimum conditions for all development are described and the proposed method has been successfully applied for the determination of promethazine hydrochloride in bulk drug.
Circular thin walled structures have wide range of applications. This type of structure is generally exposed to different types of loads, but one of the most important types is a buckling. In this work, the phenomena of buckling was studied by using finite element analysis. The circular thin walled structure in this study is constructed from; cylindrical thin shell strengthen by longitudinal stringers, subjected to pure bending in one plane. In addition, Taguchi method was used to identify the optimum combination set of parameters for enhancement of the critical buckling load value, as well as to investigate the most effective parameter. The parameters that have been analyzed were; cylinder shell thickness, shape of stiffeners section an
... Show MoreStudy of the development of an activated carbon nanotube catalyst for alkaline fuel cell technology. Through the prepared carbon nanotubes catalyst by an electrochemical deposition technique. Different analytical approaches such as X-ray diffraction (XRD) to determine the structural properties and Scanning Electron Microscope (SEM), were used to characterize, Mesh stainless steel catalyst substrate had an envelope structure and a large surface area. Voltages were also obtained at 1.83 V and current at 3.2 A of alkaline fuel cell. In addition, study the characterization of the electrochemical parameters.
ليكاند ازو جديد. 4-((3-formyl-2-hydroxyphenyl)diazenyl)-N-(5-methylisoxazol-3-yl)benzenesulfonamide, الليكاند المحضر استعمل لتحضير معقدات من ايونات معادن مختلفة مثل الكروم الثلاثي والمنغنيز الثنائي والحديد الثلاثي والبلاديوم الثنائي بنسب مولية (1:1) ( ليكاند : فلز) نتائج التشخيص للمركبات يتقنيات مطيافية الاشعة فوق البنفسجية الاشعة تحت الحمراء الرنين النووي المغناطيسي البروتوني والكربوني وطيف الكتلة والتحليل الدقيق للعناصر ومحتوى الفلز وال
... Show MoreThis study was designed to show the advantages of using the combination of metformin and rosiglitazone over using each drug alone in treatment of women with polycystic ovary syndrome (PCOS).Forty four women with PCOS were classified into 3 groups , group 1 received rosiglitazone (4mg/day) for 3 months , group ΙΙ received metformin ( 1500 mg/day)for three months and groupΙΙΙ received the combination ( rosiglitazone 4mg/day + metformin 1500 mg/day) for the same period of treatment . The blood samples were drawn before treatment and after 3 months of treatment . The fasting serum glucose , insulin , progesterone , testosterone , leutinizing hormone were measure
... Show More