Electrical resistivity tomography (ERT) methods have been increasingly used in various shallow depth archaeological prospections in the last few decades. These non‐invasive techniques can save time, costs, and efforts in archaeological prospection and yield detailed images of subsurface anomalies. We present the results of quasi‐three‐dimensional (3D) ERT measurements in an area of a presumed Roman construction, using a dense electrode network of parallel and orthogonal profiles in dipole–dipole configuration. A roll‐along technique has been utilized to cover a large part of the archaeological site with a 25 cm electrode and profile spacing, respectively. We have designed a new field procedure, which used an electrode array fixed in a frame. This facilitated a very efficient field operation, and overall a total of 9648 electrode positions were occupied. The 3D ERT inversion results clearly characterize the main structures of the Roman foundations. We compared our high‐resolution 3D electrical resistivity model with findings from archaeological excavations, which have been done in some parts of the surveyed area. The ERT result coincide well with the excavation results, i.e. the location as well as the vertical and horizontal extensions of the structures could be precisely imaged. The ERT results successfully images most parts of the walls, pits and also smaller internal structures of the Roman building; moreover, excavation ditches that had been refilled prior to the ERT survey are delineated as resistivity heterogeneities as well.
The dynamics of a single condensing two-phase bubble of two different dispersed-continuous systems were studied. The systems were, CCl4 - water and CCl4 - 100% glycerol. Cinephotography was used to determine the change in height, diameter and time. These results were used to determine the experimental rise velocity of the bubble, which was compared with a theoretical one based on some equations used. It was found that the velocity of the first system remained almost constant, while it decreased gradually for the second system.
In this paper, a differential operator is used to generate a subclass of analytic and univalent functions with positive coefficients. The studied class of the functions includes:
which is defined in the open unit disk satisfying the following condition
This leads to the study of properties such as coefficient bounds, Hadamard product, radius of close –to- convexity, inclusive properties, and (n, τ) –neighborhoods for functions belonging to our class.
This work is concerned with designing two types of controllers, a PID and a Fuzzy PID, to be used
for flying and stabilizing a quadcopter. The designed controllers have been tuned, tested, and
compared using two performance indices which are the Integral Square Error (ISE) and the Integral
Absolute Error (IAE), and also some response characteristics like the rise time, overshoot, settling
time, and the steady state error. To try and test the controllers, a quadcopter mathematical model has
been developed. The model concentrated on the rotational dynamics of the quadcopter, i.e. the roll,
pitch, and yaw variables. The work has been simulated with “MATLAB”. To make testing the
simulated model and the controllers m
This paper aims at analyzing Terry Bisson’s short story Bears Discover Fire stylistically by following both Gerard Genette’s theory of narratology (1980) and Short and Leech (1981) strategy for analyzing fictional works. Also trying to examine to what extent these models are applicable in analyzing the selected story. Stylistic analysis procedures help the readers/researchers to identify specific linguistic features in order to support literary interpretation and appreciation of literary texts. Style in fiction concentrates not on what is written, but on how a text is written. Each writer has his own style and techniques which distinguish him from other writers
Nowadays, many new technologies developed in a lot of countries. These technologies are promising in many areas such as environmental monitoring, precision agriculture as well as in animal production. The purpose of this study was to define a better understanding of how new and advanced technologies affect the agriculture and livestock sector alike. Although agriculture and animal husbandry are among the most important sectors, advanced equipment and information technology cannot be used adequately. This situation leads to low production efficiency. It is also known that there can be a significant difference in temperature between the position of the climate control sensor (room temperature) and the area occupied by the animal. This study e
... Show MoreThis paper deals with a Twin Rotor Aerodynamic System (TRAS). It is a Multi-Input Multi-Output (MIMO) system with high crosscoupling between its two channels. It proposes a hybrid design procedure that combines frequency response and root locus approaches. The proposed controller is designated as PID-Lead Compensator (PIDLC); the PID controller was designed in previous work using frequency response design specifications, while the lead compensator is proposed in this paper and is designed using the root locus method. A general explicit formula for angle computations in any of the four quadrants is also given. The lead compensator is designed by shifting the dominant closed-loop poles slightly to the left in the s-plane. This has the effect
... Show MoreIn the image processing’s field and computer vision it’s important to represent the image by its information. Image information comes from the image’s features that extracted from it using feature detection/extraction techniques and features description. Features in computer vision define informative data. For human eye its perfect to extract information from raw image, but computer cannot recognize image information. This is why various feature extraction techniques have been presented and progressed rapidly. This paper presents a general overview of the feature extraction categories for image.