Electrical resistivity tomography (ERT) methods have been increasingly used in various shallow depth archaeological prospections in the last few decades. These non‐invasive techniques can save time, costs, and efforts in archaeological prospection and yield detailed images of subsurface anomalies. We present the results of quasi‐three‐dimensional (3D) ERT measurements in an area of a presumed Roman construction, using a dense electrode network of parallel and orthogonal profiles in dipole–dipole configuration. A roll‐along technique has been utilized to cover a large part of the archaeological site with a 25 cm electrode and profile spacing, respectively. We have designed a new field procedure, which used an electrode array fixed in a frame. This facilitated a very efficient field operation, and overall a total of 9648 electrode positions were occupied. The 3D ERT inversion results clearly characterize the main structures of the Roman foundations. We compared our high‐resolution 3D electrical resistivity model with findings from archaeological excavations, which have been done in some parts of the surveyed area. The ERT result coincide well with the excavation results, i.e. the location as well as the vertical and horizontal extensions of the structures could be precisely imaged. The ERT results successfully images most parts of the walls, pits and also smaller internal structures of the Roman building; moreover, excavation ditches that had been refilled prior to the ERT survey are delineated as resistivity heterogeneities as well.
The world's population growth and the increasing demand for new infrastructure facilities and buildings , present us with the vision of a higher resources consumption, specially in the form of more durable concrete such as High Performance Concrete (HPC) . Moreover , the growth of the world pollution by plastic waste has been tremendous. The aim of this research is to investigate the change in mechanical properties of HPC with added waste plastics in concrete. For this purpose 2.5%, 5% and 7.5% in volume of natural fine aggregate in the HPC mixes were replaced by an equal volume of Polyethylene Terephthalate (PET) waste , got by shredded PET bottles. The mechanical propert
... Show MoreABSTRACT: In this research SnO2 thin films have been prepared by using hot plate atmospheric pressure chemical vapor deposition (HPCVD) on glass and Si (n-type) substrates at various temperatures. Optical properties have been measured by UV-VIS spectrophotometer, maximum transmittance about (94%) at 400 0C. Structure properties have been studied by using X-ray diffraction (XRD) , its shows that all films have a crystalline structure in nature and by increasing growth temperature from(350-500) 0C diffraction peaks becomes sharper and grain size has been change. Atomic force microscopy (AFM) uses to analyze the morphology of the Tine Oxides surface structure. Roughness & Root mean square for different temperature have been investigated. The r
... Show MoreAs a reservoir is depleted due to production, pore pressure decreases leading to increased effective stress which causes a reduction in permeability, porosity, and possible pore collapse or compaction. Permeability is a key factor in tight reservoir development; therefore, understanding the loss of permeability in these reservoirs due to depletion is vital for effective reservoir management. The paper presents a case history on a tight carbonate reservoir in Iraq which demonstrates the behavior of rock permeability and porosity as a function of increasing effective stress simulating a depleting mode over given production time. The experimental results show unique models for the decline of permeability and porosity as function effective str
... Show MoreIn this work, porous silicon (PS) are fabricated using electrochemical etching (ECE) process for p-type crystalline silicon (c-Si) wafers of (100) orientation. The structural, morphological and electrical properties of PS synthesized at etching current density of (10, 20, 30) mA/cm2 at constant etching time 10 min are studied. From X-ray diffraction (XRD) measurement, the value of FWHM is in general decreases with increasing current density for p-type porous silicon (p-PS). Atomic force microscope (AFM) showed that for p-PS the average pore diameter decreases at 20 mA. Porous silicon which formed on silicon will be a junction so I-V characteristics have been studied in the dark to calculate ideality factor (n), and saturation current (Is
... Show MoreFor many problems in Physics and Computational Fluid Dynamics (CFD), providing an accurate approximation of derivatives is a challenging task. This paper presents a class of high order numerical schemes for approximating the first derivative. These approximations are derived based on solving a special system of equations with some unknown coefficients. The construction method provides numerous types of schemes with different orders of accuracy. The accuracy of each scheme is analyzed by using Fourier analysis, which illustrates the dispersion and dissipation of the scheme. The polynomial technique is used to verify the order of accuracy of the proposed schemes by obtaining the error terms. Dispersion and dissipation errors are calculated
... Show MoreExperimental research was carried out to investigate the performance of CFRP wrapping jackets used for retrofitting twelve square reinforced concrete (CR) column specimens damaged by exposure to fire flame, at different temperatures of 300, 500 and 700ºC, except for two specimens that were not burned. The specimens were then loaded axially till failure after gradual or sudden cooling. The specimens were divided into two groups containing two main reinforcement ratios, ρ= 0.0314 and ρ= 0.0542. This was followed by the retrofitting procedure that included wrapping all the specimens with two layers of CFRP fabric sheets. The test results of the retrofitted specimens showed that the fire damaged RC
... Show MoreThis study was undertaken to provide more insight on the optimum injection temperature used for the production of PE crates, thereby saving time and money, and improving part quality. The work included processing trails of HDPE crates in an injection
molding machine at five temperatures ranged from 220 to 300°C. Both Rheological and mechanical characterization was conducted in order to understand the effect of injection temperature on the properties of crates. Oven aging was also applied for (4 weeks) to evaluate the long-term thermal stability. The results revealed that producing the crates at a temperature range of (260-280 °C) gives the best rheological and mechanical result. The lowest drop in thermal stability has been observed
Abstract
The current research aims to know the reality of the research's coefficients, to know correlation and effectiveness between the organizational Agility and high performance . The current research has been applied on the official banks , including a sample of senior administration members (120) ; besides , the research has used questionnaire that being considered as the main tool for gathering information and data . It includes 59 questions in addition to the personal interviews program as to support the questionnaire and to fulfill a great deal of reality. It has been anal
... Show More