Electrocoagulation process was employed for the treatment of river water flows in Iraq. In this study, a batch Electrocoagulation process was used to treat river water taken from Al - Qadisiyah water treatment plant. electrolysis time, voltage and inter-electrode spacing were the most important parameters to study . A statistical model was developed using the RSM model. The optimum condition after studying the parameter effect the process was 1 cm separating, 30 volts . The RSM model shows the ideal condition of removal for both the TSS and turbidity at 1 cm, 20 volts and 55 min.
The presence of dyes in wastewater has become a major issue all over the world. The discharge of dyes in the environment is concerned for both toxicological and esthetical reasons. In this study, the removal of dyes from aqueous solution by electrocoagulation using aluminum electrodes as cathode and anode were investigated with the electrocoagulation cell of 1litter. The study included: the impact of various operating parameters on the dyes removal efficiency like pH, NaCl concentration, distance between electrodes, voltage, initial dyes concentration and type of electrodes. The dye (congo red) concentrations were (50, 100, 150, and 200 ppm), stirring speed was 120 rpm at room temperature. pH used was maintained constant
... Show MoreResponse surface methodology (RSM) based on central composite design was successfully applied to redesign MRS media for maximizing both biomass and bacteriocin production from Lactobacillus plantarum NH40. First, glucose and yeast extract were chosen as the best carbon and nitrogen sources based on classical optimization results of one factor at time which also revealed the possibility of eliminating peptone and meat extract from the original composition of medium without affecting the growth and bacteriocin production. Statistical experimental design based on a regression model generated using the Design expert 7 software showed that the optimum concentrations of glucose, yeast extract, tween80, NH4Cr, CH
Removing Congo red (CR) is critical in wastewater treatment. We introduce a combination of electrocoagulation (EC) and electro-oxidation (EO) to address the elimination of CR. We also discuss the deposition of triple oxides (Cu–Mn–Ni) simultaneously on both anodic and cathodic graphite electrodes at constant current density. These electrodes efficiently worked as anodes in the EC-EO system. The EC-CO combination eliminated around 98 % of the CR dye and about 95 % of the Chemical Oxygen demand (COD), and similar results were obtained with the absence of NaCl. Thus, EC-EO is a promising technique to remove CR in an environmentally friendly pathway.
The electrocoagulation process became one of the most important technologies used for water treatment processes in the last few years. It’s the preferred method to remove suspended solids and heavy metals from water for treating drinking water and wastewater from textile, diary, and electroplating factories. This research aims to study the effect of using the electrocoagulation process with aluminum electrodes on the removal efficiency of suspended solids and turbidity presented in raw water and optimizing by the response surface methodology (RSM). The most important variables studied in this research included electrode spacing, the applied voltage, and the operating time of the electrocoagulation process. The samples
... Show MoreThe economical and highly performed anode material is the critical factor affecting the efficiency of electro-oxidation toward organics. The present study aimed to detect the best conditions to prepare Mn-Co oxide composite anode for the electro-oxidation of phenol. Deposition of Mn-Co oxide onto graphite substrate was investigated at 25, 30, and 35 mA/cm2 to detect the best conditions for deposition. The structure and the crystal size of the Mn-Co oxide composite electrode were examined by using an X-Ray diffractometer (XRD), the morphological properties of the prepared electrode were studied by scanning electron microscopy (SEM) and Atomic force microscopy (AFM) techniques, and the chemical composition of the various
... Show MoreThe present work reports the electrochemical synthesis of poly N Terminal tetrahydrophthalamic acid on stainless steel 316 (S.S), which acts as a working electrode, using an electrochemical polymerization technique. Fourier Transform Infrared Spectroscopy (FT-IR), Atomic Force Microscope (AFM) and Scanning Electron Microscope (SEM) characterized the formed polymer film. Corrosion protection tests for coated and uncoated S.S with polymer film were studied in 0.2 M hydrochloric acid (HCl) solution by using electrochemical polarization technique. Kinetic and thermodynamic activation parameters (Ea, A, ΔH*, ΔS* and ΔG*) were calculated. The biological activity of the polymeric film was determined against Gram positive (Staphy
... Show More